
Security Documentation Send comments on this topic.

Security Introduction Security Introduction Security Introduction Security Introduction

StrataFrame Role-Based Security

StrataFrame Role Based Security is very comprehensive and provides the

end-user with the expected protection afforded by a well designed

software security system. Its ultimate goal is to prevent a breach into

unauthorized areas of an application from all points of a user interface.

 The actual implementation for the developer is straightforward and very

well documented. This security system is more advanced than a typical

out-of-the box framework security module.

Overview

Many application developers are faced with the arduous task of designing

and implementing a security system that resides on top of an existing

framework. StrataFrame Role Based Security provides a convenient, yet

extremely thorough methodology of embedding security at the base level

of your application.

Security within StrataFrame is engineered at the most elementary level of

the framework. This allows the developer to set security rules with

associated business objects and UI controls.

End-User Security Application Included

StrataFrame Role Based Security also provides the developer with a

robust Security Application for development and maintenance of global

security preferences, permissions, roles, and users. The Security

Application may be embedded and distributed with your own application,

with a royalty free runtime license.

Technical and User Help

Role Based Security is also distributed with both Technical Help to be used

by the developer for implementation within your application, and with

User Help that explains the Security Application for the end user. Of

course, the User Help may be distributed royalty free runtime.

Page 1 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Global Preferences Overview Global Preferences Overview Global Preferences Overview Global Preferences Overview

Purpose: This document describes the use and maintenance of the global

preferences of the security system.

Global Preferences Overview

The global preferences are used to enforce universal constraints within the

security system. With the exception of password expiration and session

lockouts, the values cannot be overridden. The preferences exist in order

to control password strength, password policies, logon regulations, and

session locking.

The global preferences are stored within their own table within SQL

Server, but the table will only have one record per security project.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Editing Global Preferences Editing Global Preferences Editing Global Preferences Editing Global Preferences

Purpose: This document describes the method used to edit the global

preferences of the security system.

Editing Global Preferences

Follow these steps to edit the global preferences for the security system:

Page 2 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

1. Ensure that the Security Dialog is open for the security project for

which you want to edit the global preferences.

2. Select the Global Preferences node from the tree view.

3. Click the Edit button at the bottom of the right-hand property sheet.

4. Edit the properties within the global preferences.

5. Click Save to save your changes.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Global Preferences Properties Global Preferences Properties Global Preferences Properties Global Preferences Properties

Purpose: This document describes the settings within the global

preferences that can be edited through the global preferences editor.

Global Preferences Settings

The global preferences settings panel allows you to view/edit the global

preferences for a security project.

Page 3 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Global Properties Settings Editor Fields

Password Strength & Restrictions

Typically, most users log on to their computer or application by using a

combination of their name and password simply typed on a keyboard.

Although alternative technologies exist for authentication, such as

biometrics or smart cards, most organizations still rely on traditional

passwords; therefore, it is important that password policies can be

Page 4 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

defined that mandate the use of strong passwords.

These settings exist to enforce password strength within the system.

Maximum

Length

Specifies the maximum length (number of

characters) that a password can be within the

system. This value can be between 14 and 28

characters. The default is 14.

Minimum

Length

Specifies the minimum length (number of

characters) that a password can be within the

system. This value can be between 0 and 14

characters. The default is 6. If this value is set to

0, users are allows to have blank passwords. The

recommended value for this setting is 6-8

characters.

Note: If Complex Passwords is enabled, and

this value is set to less than 6 characters, then

the minimum password length is enforced to be

6 characters.

Complex

Passwords

Determines whether users are required to supply

passwords that meet the minimum complexity

requirements. Click here for a definition of what

the system considers a complex password. If this

box is checked, then the minimum password

complexity requirements will be enforced any time

a user's password is set or changed.

Minimum

Time Between

Password

Changes

Determines the amount of time (in days, hours,

and minutes) that a user must wait between

password changes. For example, if the setting is 3

hours, then when a user changes his/her

password he/she must wait 3 hours before his/her

password can be changed again.

Maximum

Password Age

Determines the amount of time (in days and

hours) that a user can keep a password before it

expires and must be changed. If this value is set

to 0, then passwords will never expire and the

system will never require users to change their

passwords.

Note: This value can be overriden at the user

level by specifying that the user's password will

Page 5 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

never expire.

Enforce

Password

History

Prevents users from using passwords they have

used in the past, up to the number of passwords

that specified. This value can be between 0 and

24. The default is 10. If the password history is

configured to 0, then the password history feature

is disabled.

Logon and Sessions

Deactivate

Account

Indicates how many invalid logon attempts the

system will allow on the account before the

account is deactivated. The number of invalid

logon attempts specified must occur within the

amount of time specified for the account to be

disabled. The default number of invalid logon

attempts is 3, and the default amount of time is 1

minute.

Password

Input

Intervals

Specifies the amount of time a user must wait

after an invalid logon attempt before he/she is

allows to logon again. This forces a user to wait

the specified amount of time after they enter an

invalid password. The default amount if 5

seconds.

Session

Inactivity

Lock

The amount of inactivity the application will allow

before the session is locked and the user must re-

authenticate before continuing to use the

application. The system will resume to is previous

state after the session is unlocked. The default for

this value is 20 minutes. If this value is set to 0,

the application will never timeout.

Note: This value can be overriden at a user

level.

Buttons

Edit, Save,

and Cancel

Buttons

� Edit - This button enables the global

preferences for editing.

� Save - Commits the changes to the global

preferences.

Page 6 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� Cancel - Aborts any changes made to the

global preference record since the last time the

Edit button was clicked.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Password Complexity Password Complexity Password Complexity Password Complexity

Purpose: This document describes the requirements for a complex

password within the security system.

Password Complexity

The requirements for a complex password follow closely to the

requirements defined by Microsoft® for complex password within a

Windows® 2003 system.

The exact specifications for a complex password are:

� The password must be at least six characters long.

� The password must contain characters from at least three of the

following five categories:

� English uppercase characters (A – Z)

� English lowercase characters (a – z)

� Base 10 digits (0 – 9)

� Non-alphanumeric or symbols (for example: !,$,#, or %)

� Unicode characters

� The password cannot contain three or more consecutive characters

from a word in the user's account name. For example, if the account

name is "John L. Doe", a password would not meet the minimum

Page 7 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

complexity requirements if any of the following combinations was

contained within the password: "joh", "ohn", "doe".

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Permissions Overview Permissions Overview Permissions Overview Permissions Overview

Purpose: This document provides an overview of permissions and how

they are used within the security system.

Permissions Overview

Resources within the application are assigned a permission. This

permission is required to access or manipulate that resource within the

application. The permission is then granted or denied to specific roles and

users to indicate whether the users have the right to access or manipulate

that resource.

The permissions available depend on the application and are assigned by

the software developer and cannot be created or edited outside of the

development environment. Typically, a permission is binary: either you

have a particular permission or you don't; however, any permission can

be configured to also allow read-only access.

How Permissions are Used

Typically, permissions are divided into one of the following categories:

1. Form-Level Permission - Access to the form is either granted or

denied.

2. Table-Level Permission

� Table-Level Add - A user can add a record to a table.

� Table-Level Edit - A user can edit a record within a table.

Page 8 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� Table-Level Delete - A user can delete a record via the form.

3. Field-Level Permission - Access to a field can be specified as either

editable, read-only, or denied.

Not all levels of permissions are required to exist for all forms, therefore,

it is not necessary or even practical for a permission to exist for every

type of event that exists within an application.

For example, for certain maintenance forms within the application, it is

only necessary for a single permission to be assigned to deny access to

the maintenance form itself; the more granular levels are not required.

On the other hand if a form contains sensitive information that not all

users should be allowed to view or edit, the developer can force the

security for that part of the application to be more detailed, assigning a

separate permission to several different fields within a single table.

The permissions node is exposed at both design-time and run-time;

however, at run-time, permissions cannot be modified in any way.

Permission cannot be added, edited, or deleted.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Viewing Permissions Viewing Permissions Viewing Permissions Viewing Permissions

Purpose: This document provides an overview of viewing permissions

within the security system.

Viewing Permissions

From the left panel, you may either select the base permission node(1), a

category node (2), or one of the individual permission nodes (3).

Page 9 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

1. Base Permission Node - When the base permission node is selected all

permissions within the application will be displayed in the panel on the

right.

2. Category Nodes - When a base category node is selected all

permission for a particular category will be displayed in panel on the

right. Its list is identical to the list displayed when the base permission

node is selected, the only difference being that the data is filtered to

match the selected category.

3. Individual Permission Nodes - When selected, Roles and Users

assigned to that particular permission will be displayed in the panel on

the right.

� Permission Header - The grid at the top of the panel is provided to

inform the administrator of the permission's purpose as well as the

role's auditing settings.

Page 10 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

a. Denied Action - Indicates the action for a denied permission.

This is for reference and support and cannot be changed by

the application user.

b. Denied Message or Key - Indicates the actual message or

message key (used for localization) which will be used to

inform the user. This is for reference and support and cannot

be changed by the application user.

c. Description - Used to provide additional information to the

application administrator when trying to identify the purpose of

a particular permission.

d. *Auditing -

� *Application Events - When checked a log will be updated

each time the permission is accessed. For example, if the

patient enrollment permission has the application event

selected, every time the form is accessed a log entry would

be created.

� *Data Events - This event works in conjunction with the

actual form properties or business object settings. It is used

to track data changes: creating records, editing records, or

deleting records. It is controlled by the application

developer and is placed on the header for reference.

*Note: The auditing functionality described above is

planned but has not yet been implemented. This

functionality will become available with a future release.

� Roles Assigned - All roles that have been attached to the

permission will be displayed.

Page 11 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� Users Assigned - All users that have been assigned the permission

will be displayed.

� Status Bar - The status bar at the bottom of each list represents a

snapshot of roles and users that have the following access:

granted, blocked, or read only.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Adding a New Permission Adding a New Permission Adding a New Permission Adding a New Permission

Purpose: This document describes the process of adding a new

permission to the security system.

Adding a New Permission

Follow these steps to add a new permission to the security system:

1. Select the base Permissions node.

Page 12 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

2. Click the Add a New Permission button on the Security Editor toolbar.

OR

Right-click the selected Permissions node within the left pane of the

Security Editor and select New Permission... from the context menu.

OR

Right-click anywhere within the right pane and select New

Permission... from the context menu.

3. Enter the information for the new permission within the Permission

Editor.

4. Click Save to save the new permission and return to the Security

Editor.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Editing a Permission Editing a Permission Editing a Permission Editing a Permission

Purpose: This document describes the process of editing a permission

within the security system.

Editing a Permission

Page 13 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Follow these steps to edit a permission within the security system:

1. Expand the Permissions base node and permission category to

display the permission you want to edit.

2. Right-click the node representing the permission to edit and select

Edit Permission... from the context menu.

OR

Select the node representing the permission to edit and click the Edit

Selected Permission button on the Security Editor toolbar.

3. Enter the information for the permission within the Permission Editor.

4. Click Save to save the permission and return to the Security Editor.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Deleting a Permission Deleting a Permission Deleting a Permission Deleting a Permission

Purpose: This document describes the process of deleting a permission

within the security system.

Page 14 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Deleting a Permission

To delete an existing permission:

1. Expand the Permissions nodes to display the role you want to delete.

2. Right-click the node representing the permission to delete and

select Delete Permission... from the context menu.

OR

Select the node representing the permission to delete and click

the Delete Selected Permission button on the Security Editor toolbar.

3. Click Yes on the delete confirmation window to delete the permission.

Page 15 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Copying a Permission Copying a Permission Copying a Permission Copying a Permission

Purpose: This document describes the process of copying an

existing permission within the security system.

Copying an Existing Permission

Follow these steps to copy an existing permission within the security

system:

1. Expand the Permissions nodes to display the permission you want to

copy.

2. Right-click the node representing the permission to copy and select

Copy Permission... from the context menu.

3. Review and finalize the information for the permission within the

Permission Editor.

4. Click Save to save the Permission and return to the Security Editor.

Note: Since the Key defaults to the exact Key name of the source

Page 16 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

permission, and no duplicate Keys may exist, the Key for the copied

permission must be changed before a Save is allowed.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Assigning Permissions Assigning Permissions Assigning Permissions Assigning Permissions

Purpose: This document provides an overview of assigning permissions to

users and roles within the security system.

Assigning Permissions

Permissions are selected via the list row check box; a check mark

indicates the permission is enabled. Permission selection and

property management (such as actions, auditing, and restriction sets) can

be cascaded from the parent node.

For example, if you want to select all permissions that comprise the

“Patient Enrollment” category, simply select the Patient Enrollment

category node and all of its children will be selected. This is a very fast

way assign entire categories of permissions to a given user or role, or to

apply properties to all permissions of a given category.

Page 17 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Permissions may be assigned or applied at three levels:

1. All Permissions - All available permissions will be selected for the role.

2. By Category – all available permissions for the category will be

selected for the role.

3. By Permission – an individual permission is selected when checked.

Note: If a parent nodes is not selected yet one or more of its children

are selected, the parent node will be marked with a square icon. On the

preceding image notice the base permission node is showing a partial

selection, while the selection for the Patient Enrollment node is complete

since it includes all of its children.

Page 18 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Each assigned permission may have the following properties:

4. Default Action – This combo box allows up to three choices.

a. Deny - This selection will deny access to the permission and the

user will be informed typically with a warning message. This flag

is used in conjunction with the “Denied Action” selection on the

actual permission.

b. Grant – This selection grants the user access to the permission.

c. Read-Only – This selection allows a user to view the permission

but the data cannot be added, edited, or deleted.

Note: Read-only status will typically be disabled during

permission creation for those permissions where it does not

make sense. As such, if the Read-only option is not displayed

in the combo box, it has been disabled at the permission level.

5. *Auditing - Selection of either auditing event overrides its

corresponding lower level selection. For example, if the selection is

made at the role level it will override any selection made at the

permission level. If the selection is made at the user level it will

override any selection made at the role or permission levels. Please

refer to the "Permission Properties" help topic for further information.

*Note: The auditing functionality described above is planned but

has not yet been implemented. This functionality will become

available with a future release.

6. Restriction Set - A restriction set must first be created before it may

be applied to a permission. Please refer to the "Restriction Sets

Overview" and "Adding a New Restriction Set" help topics for further

information.

a. Workstation - This combo box is used to select the workstation to

be represented in the visual representation. If the restriction set

has not been defined by workstation, only one row will exist in

the combo box and an asterisk “*” will be displayed. Otherwise,

the desired workstation may be chosen from the list in order to

Page 19 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

display the associated grid.

b. Visual Representation - This is a visual image, by workstation, for

the selected restriction set. It is used to aid the administrator

when trying to determine what actual "Restriction Set" to apply.

The following picture depicts denied access on Monday,

Wednesday, and Friday from 8:00am to 5:00pm.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Permission Hierarchy Permission Hierarchy Permission Hierarchy Permission Hierarchy

Purpose: To explain the permission hierarchy used when two or more

permissions of the same level conflict.

Permission Hierarchy

A unique permission can be assigned to many roles and many roles can be

assigned to a user. In addition, the same unique permission can be

Page 20 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

overridden at the user level. In other words, a single permission could be

assigned to a user from multiple roles or at the user level.

When conflicting permissions are applied to a user, the following two rules

are used to select the final effective permission:

� The assignment at the user level always takes precedence over any

assignment at the role level.

� If a permission is assigned to multiple roles and subsequently those

roles are assigned to a user, the permission assignment with the

highest action takes precedence. The possible actions, from highest to

lowest, are:

1. Granted

2. Granted with Restriction Set

3. Read-only with Restriction Set

4. Read-only

5. Blocked with Restriction Set

6. Blocked

Note: If two permissions with restrictions sets of the same level (i.e.

two permissions set as "Blocked with Restriction Set") are applied to a

single user, the two different permission sets will be combined using the

above hierarchy as a guide.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Permission Properties Permission Properties Permission Properties Permission Properties

Purpose: This document describes the properties associated with a

permission.

Page 21 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Permission Properties

Page 22 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Permission Properties

Key Enter a unique identifier that best describes the

permission.

Category Enter a category for the permission or select one

that has been previously entered. Typically, an

application function that is easily recognized by an

end-user is used for the text of a category. For

example, financial reports, appointment scheduling,

order entry, etc.

Description This property is used to further describe the

permission.

Action Select the action to be invoked when this

permission is denied.

� No Message - This option is used when no

message needs to be displayed to the end user.

For example:

1. Programmatic Access - This option may be

used for programmatic access when user

intervention is not necessary.

2. Field Level - If this is set for a field and its

access is denied, the user will not be able to

view the contents of the field (it will be

blank). The actual data that is bound to the

field is not changed, only its viewing state.

� Message - The message entered in the Message

or Key text box will be displayed to the end-

user.

� Message Key - The message key entered in the

Message or Key text box will be looked-up and

its corresponding text will be displayed to the

user.

� Replace each Character - This selection is the

same as the "No Message" selection, the only

difference being that instead of blanks being

displayed, the character "X" will be used to

replace the field contents. Again, only the

viewing state is changed with this selection, the

actual data is unharmed.

Page 23 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

* - Auditing functionality was not included with the 1.5 release of

Strataframe. This functionality will become available with a future release.

Message or

Key

Based on the selection made via the Action combo

box, enter the text of the denied message or a

localized key for display to the end-user.

Auditing* /

Read Only
� Application Events - When checked a log will be

updated each time the permission is accessed.

For example, if a Logon permission has this

checkbox selected, a log entry will be created

every time the event is accessed during the

logon process.

� Data Events - This event works in conjunction

with the actual form properties or business

object settings. It is used to track data changes:

creating records, editing records, or deleting

records. Each CRUD function can be controlled

via business properties settings providing

developer control.

Note: These event exists at the permission

level for flexibility. They are typically assigned

to a permission at the role or user level. It is

important to remember that a user cannot

change a permission. Hence, if you select

auditing at the root permission it cannot be

disabled via the runtime application.

� Do Not Allow Read-only - This check box

excludes the read-only choice from the action

combo box at the role or user level. It simply

does not make sense for some permissions to be

allowed a read-only status. For example, form

access should be either granted or denied, not

read-only. For this reason, it is recommended all

form permissions have this option checked.

Page 24 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Roles Overview Roles Overview Roles Overview Roles Overview

Purpose: This document provides an overview of roles and how they are

used within the security system.

Roles Overview

In role-based security, permissions are associated with roles. Users are

then made members of roles, thereby acquiring the associated

permissions. The purpose of the role is to group like tasks such as nurses,

doctors, or insurance clerks together, thereby helping manage users and

control access to application functions.

The assignment of a permission to a role is a simple binary function:

permissions are checked to assign access and are unchecked to deny

access. Furthermore, a role can be controlled at a more granular level with

actions, auditing, and its restrictions of use.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Viewing Roles Viewing Roles Viewing Roles Viewing Roles

Purpose: This document provides an overview of viewing roles within the

security system.

Viewing Roles

From the left panel, you may either select the base role node (1), or one

of the individual role nodes (2).

Page 25 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

1. Base Role Node - When the base role node is selected all roles within

the application will be displayed in the panel on the right.

2. Individual Role Nodes - When an individual role node is selected both

Permissions Assigned and Users Assigned to a particular role will be

displayed in the panel to the right.

� Role Header - The grid at the top of the panel is provided to inform

the administrator of the role's purpose as well as the role's auditing

settings.

a. Description - Used to identify the purpose and function of the

role.

b. *Auditing - Selection of either auditing event overrides its

corresponding lower level selection. For example, if the

selection is made at the role level it will override any selection

made at the permission level. If the selection is made at the

user level it will override any selection made at the role or

permission levels. Please refer to the "Permission Properties"

help topic for further information.

� *Application Events - When checked a log will be updated

each time the permission is accessed. For example, if the

Page 26 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

patient enrollment permission has the application event

selected, every time the form is accessed a log entry would

be created.

� *Data Events - This event works in conjunction with the

actual form properties or business object settings. It is used

to track data changes: creating records, editing records, or

deleting records. It is controlled by the application

developer and is placed on the header for reference.

*Note: The auditing functionality described above is

planned but has not yet been implemented. This

functionality will become available with a future release.

� Permissions Assigned - All permissions that have been attached to

the role will be displayed.

� Users Assigned - All users that have been attached to the role will

be displayed.

� Status Bar - The status bar at the bottom of each list represents a

snapshot of permissions and users. The permissions are

summarized by the access status: granted, blocked, or read-only.

The total numbers of users assigned to the role are displayed on

the right panel.

Page 27 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Adding a New Role Adding a New Role Adding a New Role Adding a New Role

Purpose: This document describes the process of adding a new role to

the security system.

Adding a New Role

Follow these steps to add a new role to the security system:

1. Select the base Roles node.

2. Click the Add a New Role button on the Security Editor toolbar.

OR

Right-click the selected Roles node within the left pane of the

Security Editor and select New Role... from the context menu.

OR

Right-click anywhere within the right pane and select New Role...

from the context menu.

3. Enter the information for the new role within the Role Editor.

Page 28 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

4. Click Save to save the new role and return to the Security Editor.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Editing a Role Editing a Role Editing a Role Editing a Role

Purpose: This document describes the process of editing a role within the

security system.

Editing a Role

Follow these steps to edit a role within the security system:

1. Expand the Roles node to display the role you want to edit.

2. Right-click the node representing the role to edit and select Edit

Role... from the context menu.

OR

Select the node representing the role to edit and click the Edit

Selected Role button on the Security Editor toolbar.

3. Enter the information for the role within the Role Editor.

4. Click Save to save the role and return to the Security Editor.

Page 29 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Deleting a Role Deleting a Role Deleting a Role Deleting a Role

Purpose: This document describes the process of deleting a role within

the security system.

Deleting a Role

To delete an existing role:

1. Expand the Roles node to display the role you want to delete.

2. Right-click the node representing the role to delete and select Delete

Role... from the context menu.

OR

Select the node representing the role to delete and click the Delete

Selected Role button on the Security Editor toolbar.

3. Click Yes on the delete confirmation window to delete the role.

Page 30 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Copying a Role Copying a Role Copying a Role Copying a Role

Purpose: This document describes the process of copying an existing

role within the security system.

Copying an Existing Role

Follow these steps to copy an existing role within the security system:

1. Expand the Roles node to display the role you want to copy.

Page 31 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

2. Right-click the node representing the role to copy and select Copy

Role... from the context menu.

3. Select Create new Role from the Role Copy window.

OR

Select Copy settings to existing Role and select the target existing

Role from the Role Copy window.

4. Click OK to accept the role copy and display the Role Editor.

5. Review and finalize the information for the role within the Role Editor.

6. Click Save to save the role and return to the Security Editor.

Note: When copying settings to an existing role, all auditing and

permission settings for the existing role will be overwritten with the

source role's settings. The role name and description will be left

untouched.

Page 32 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Role Properties Role Properties Role Properties Role Properties

Purpose: This document describes the properties associated with a role.

Role Properties

Page 33 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Role Properties

Page 34 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Role The unique description of the role to be used as the

primary identifier of the role. It is recommended

that the role name describe typical employee

functions (doctor, nurse, etc.)

Description Can be used to further describe the role. The

Description is typically used by an administrator

for remarks or comments.

Audit

Application

Events

If selected, all application events regardless of

function will be audited for this role. Application

events are defined by the application's functionality

(i.e. logon/logoff.)

Audit Data

Events

A data event exists at the actual business object or

table level. A business object containing patient

demographics information or transactions could be

an auditable event. Hence, if selected all data

processing for the business object such as adding,

editing, or deleting records will be captured. The

records that are edited will contain the field's

original value and its new value for comparison.

Permissions Please refer to the Assigning Permissions help topic

for further information.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Users Overview Users Overview Users Overview Users Overview

Purpose: This document provides an overview of users and how they are

used within the security system.

Users Overview

The purpose of any security system is to control user access. A well

designed system aids the application administrator when actually

Page 35 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

configuring a user's access rights. The objective of a role-based security

system is to manage the predominance of the access rights at the actual

role level and only override permission at the user level when necessary.

This technique allows changes to be made on a global level, the actual

role, and ultimately inherited at the individual user level. Nevertheless, it

is important to be able to granularly control any user without effecting

roles or other users. This system is designed to incorporate the necessary

control and access for the end-user.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Viewing Users Viewing Users Viewing Users Viewing Users

Purpose: This document provides an overview of viewing users within the

security system.

Viewing Users

From the left panel, you may either select the base user node (1), or one

of the individual user nodes (2).

1. Base User Node - When the base user node is selected all roles within

the application will be displayed in the panel on the right.

2. Individual User Nodes - When an individual user node is selected both

Page 36 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Permissions Assigned and Roles Assigned to a particular user will be

displayed in the panel to the right.

� User Header - The grid at the top of the panel provides the

administrator with basic reference information for a particular user.

a. User Name - Name used to identify the user during logon.

b. Active - Indicate if the user account is active for use.

c. Administrator - Indicates if the user has administrator rights.

d. *Auditing - Selection of either auditing event overrides its

corresponding lower level selection. For example, if the

selection is made at the role level it will override any selection

made at the permission level. If the selection is made at the

user level it will override any selection made at the role or

permission levels. Please refer to the "Permission Properties"

help topic for further information.

� *Application Events - When checked a log will be updated

each time the permission is accessed. For example, if the

patient enrollment permission has the application event

selected, every time the form is accessed a log entry would

be created.

� *Data Events - This event works in conjunction with the

actual form properties or business object settings. It is used

to track data changes: creating records, editing records, or

deleting records. It is controlled by the application

developer and is placed on the header for reference.

*Note: The auditing functionality described above is

planned but has not yet been implemented. This

functionality will become available with a future release.

Page 37 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

e. Windows Authentication - This selection indicates that windows

authentication will be used during the logon process.

� Roles Assigned - This list provides an accounting of all roles

assigned to the user.

� Permissions Assigned - This treeview contains three nodes:

Inherited, Overridden, and Combined.

a. Inherited - This node lists permissions that are assigned to the

user because they compose a role. For example, if the

permission "Patient Enrollment" is assigned to the role "Front

Desk" and this role is assigned to this user, then "Patient

Enrollment" will be listed under this node.

b. Overridden - This node lists permission that have been

explicitly assigned or overridden at the user level.

c. Combined - This node is a combination of the previous two

nodes. Its contents are used to create the permissions

collection that is used during the logon process. If two or

more inherited permissions are conflicting, the final effective

permission shown in the Combined node is determined using

the Permission Hierarchy.

� Status Bar - The status bar at the bottom of each list represents a

snapshot of roles and permissions. The total numbers of roles

assigned to the user are displayed on the left panel. The

permissions are summarized by the access status: granted,

blocked, or read-only.

Page 38 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Adding a New User Adding a New User Adding a New User Adding a New User

Purpose: This document describes the process of adding a new user to

the security system.

Adding a New User

Follow these steps to add a new User to the security system:

1. Select the base Users node.

2. Click the Add a New User button on the Security Editor toolbar.

OR

Right-click the selected Users node within the left pane of the

Security Editor and select New User... from the context menu.

OR

Right-click anywhere within the right pane and select New User...

from the context menu.

3. Enter the information for the new user within the User Editor.

4. Click Save to save the new user and return to the Security Editor.

Page 39 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Editing a User Editing a User Editing a User Editing a User

Purpose: This document describes the process of editing a user within

the security system.

Editing a User

Follow these steps to edit a user within the security system:

1. Expand the Users node to display the role you want to edit.

2. Right-click the node representing the user to edit and select Edit

User... from the context menu.

OR

Select the node representing the user to edit and click the Edit

Selected User button on the Security Editor toolbar.

3. Enter the information for the user within the User Editor.

4. Click Save to save the user and return to the Security Editor.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Deleting a User Deleting a User Deleting a User Deleting a User

Page 40 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Purpose: This document describes the process of deleting a user within

the security system.

Deleting a User

To delete an existing user:

1. Expand the Users node to display the role you want to delete.

2. Right-click the node representing the user to delete and select Delete

User... from the context menu.

OR

Select the node representing the user to delete and click the Delete

Selected User button on the Security Editor toolbar.

3. Click Yes on the delete confirmation window to delete the user.

Page 41 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Copying a User Copying a User Copying a User Copying a User

Purpose: This document describes the process of copying an

existing user within the security system.

Copying an Existing User

Follow these steps to copy an existing user within the security system:

1. Expand the Users node to display the user you want to copy.

2. Right-click the node representing the user to copy and select Copy

User... from the context menu.

3. Select Create new User from the User Copy window.

OR

Select Copy settings to existing User and select the target

existing User from the User Copy window.

4. Click OK to accept the user copy and display the User Editor.

5. Review and finalize the information for the user within the User Editor.

Page 42 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

6. Click Save to save the user and return to the Security Editor.

Note: When copying settings to an existing user, all options, including

role and permission settings, for the existing user will be overwritten

with the source user's settings. The user name and logon information

will be left untouched.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

User Properties User Properties User Properties User Properties

Purpose: This document describes the properties associated with a user.

User Properties

Page 43 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Name

First Enter the first name of the user.

Page 44 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Middle If desired, enter the middle name or initial.

Last Enter last name of the user.

Logon Information

Username Enter unique username that is to be used during

the logon process. The username is not case-

sensitive and must be at least 3 characters long.

Password Enter the unique, case-sensitive password. If the

global preference Complex Passwords is

selected then complex password rules will be

enforced.

Confirm Re-enter the password in order to ensure it was

entered correctly.

Options

Account is

inactive

Marks user account as inactive denying all

access. Additionally, inactive accounts can be

filtered from the user list on the Security Editor.

Administrator
Marks the user account as an administrator

granting a higher level of application access, not

requiring permission management. An

administrator is also granted access to all

aspects of the "Security Editor" for

maintenance. Any user marked as administrator

will have full access, regardless of any specific

roles or permissions applied.

Tip: Administrator users are identified by

a police officer user icon in security

maintenance.

Password

never expires

This selection overrides any global password

refreshment rules and grants the password an

eternal existence.

Change

password next

logon

The user will be required to create a new

password during the next logon process.

Page 45 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

* - Auditing functionality is planned but has not yet been implmented.

User cannot

change

password

This selection precludes the user from changing

their password.

Windows

authentication

If selected, the entered password on this form

will be circumvented during the logon process.

The user will instead be authenticated via the

windows operating system. This type of

authentication is convenient for the

administrator during the setup process since a

single password is used for the machine and the

application but is less secure when using session

locks within the application.

Audit

application

events*

This will override any previous role or permission

settings and will force all application events to

be audited for this user.

Audit data

events*

This will override any previous role or permission

settings and will force all data events to be

audited for this user.

Deactivate

account

This option will deactivate a user account after

the given date has expired. The calendar control

will be enabled and an actual date must be

selected to determine the date of deactivation.

This feature is typically used for temporary

employees when a their access to the application

should cease after a given date.

Override

timeout

session

Overrides the global preference for session

timeouts. If selected the time box to the right

will be enabled and the new overridden timeout

must be entered.

Roles and Permissions

Roles Select the row check box to assign a role. All of

the role's permissions will be attached to the

user per the permission hierarchy scheme.

Permissions Please refer to the Assigning Permissions help

topic for further information.

Page 46 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

This functionality will become available with a future release.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Restriction Sets Overview Restriction Sets Overview Restriction Sets Overview Restriction Sets Overview

Purpose: This document provides an overview of restriction sets and how

they are used within the security system.

Restriction Set Overview

A Restriction Set is used to create a global user access rule that is

comprised of days-of-week, time-of-day, workstation, and action. A

Restriction Set is used to enable or inhibit a user’s access depending on

the action (grant, deny, or read-only).

Ultimately, a restriction set is enforced at the role or user level during

permission application. Any restriction set that is assigned to a role will be

inherited by its corresponding users. Conversely, additional granularity is

provided at the user level if the restrictions imposed at the role level need

to be overridden.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Viewing Restriction Sets Viewing Restriction Sets Viewing Restriction Sets Viewing Restriction Sets

Purpose: This document provides an overview of viewing restriction sets

within the security system.

Page 47 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Viewing Restriction Sets

From the left panel, you may either select the base restriction node (1), or

one of the individual restriction nodes (2).

1. Base Restriction Node - When the base restriction node is selected all

restriction sets within the application will be displayed in the panel on

the right.

2. Individual Restriction Nodes - When an individual restriction node is

selected both Role-Permissions Assigned and User-Permissions

Assigned to that particular restriction set will be displayed in the

panel to the right.

� Workstation Combo Box - This combo box is used to select the

workstation to represent via the visual grid. Initially the default

workstation * will be selected. Drop down the box in order to

select a workstation.

� Visual Representation - The grid is used to get a quick reference by

workstation the day-of-wee, time-of-day, and action status. The

following picture depicts that the restriction is denied access

on Monday, Wednesday, and Friday from 8:00am to 5:00pm.

Page 48 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� Assigned Lists - The following two lists display all roles and users

that have been assigned to the particular restriction set. This

makes it quick and easy to determine to what roles or individual

users the current restriction set has been applied. If a node is

expanded, i.e. patient enrollment, each independent permission

within the category that is attached to the restriction set will be

included within the tree.

� Status Bar - The status bar is used to report an actual accounting

of permissions that have been assigned the Restriction Set at both

the Role and User Level.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Adding a New Restriction Set Adding a New Restriction Set Adding a New Restriction Set Adding a New Restriction Set

Page 49 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Purpose: This document describes the process of adding a new restriction

set to the security system.

Adding a New Restriction Set

Follow these steps to add a new restriction set to the security system:

1. Select the base Restriction Sets node.

2. Click the Add a New Restriction button on the Security Editor toolbar.

OR

Right-click the selected Restriction node within the left pane of the

Security Editor and select New Restriction... from the context menu.

OR

Right-click anywhere within the right pane and select New

Restriction... from the context menu.

3. Enter the information for the new restriction within the Restriction

Set Editor.

4. Click Save to save the new restriction and return to the Security

Editor.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Page 50 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Editing a Restriction Set Editing a Restriction Set Editing a Restriction Set Editing a Restriction Set

Purpose: This document describes the process of editing a restriction set

within the security system.

Editing a Restriction Set

Follow these steps to edit a restriction set within the security system:

1. Expand the Restriction Sets node to display the restriction you want

to edit.

2. Right-click the node representing the restriction to edit and select

Edit Restriction... from the context menu.

OR

Select the node representing the restriction to edit and click the Edit

Selected Restriction button on the Security Editor toolbar.

3. Enter the information for the role within the Restriction Set Editor.

4. Click Save to save the restriction and return to the Security Editor.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Deleting a Restriction Set Deleting a Restriction Set Deleting a Restriction Set Deleting a Restriction Set

Page 51 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Purpose: This document describes the process of deleting a restriction

set within the security system.

Deleting a Restriction Set

To delete an existing restriction set:

1. Expand the Restriction Sets node to display the restriction you want

to delete.

2. Right-click the node representing the restriction to delete and

select Delete Restriction... from the context menu.

OR

Select the node representing the restriction to delete and click

the Delete Selected Restriction button on the Security Editor toolbar.

3. Click Yes on the delete confirmation window to delete the restriction.

Page 52 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Copying a Restriction Set Copying a Restriction Set Copying a Restriction Set Copying a Restriction Set

Purpose: This document describes the process of copying an

existing restriction set within the security system.

Copying an Existing Restriction Set

Follow these steps to copy an existing restriction set within the security

system:

1. Expand the Restriction Sets nodes to display the restriction you want

to copy.

2. Right-click the node representing the restriction to copy and select

Copy Restriction... from the context menu.

3. Review and finalize the information for the restriction within the

Restriction Set Editor.

4. Click Save to save the restriction and return to the Security Editor.

Note: Since the Name defaults to the exact Name of the source

permission, and no duplicate Names may exist, the Name for the copied

permission must be changed before a Save is allowed.

Page 53 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Restriction Set Properties Restriction Set Properties Restriction Set Properties Restriction Set Properties

Purpose: This document describes the properties associated with a

restriction set.

Restriction Set Properties

Page 54 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Restriction Properties

Name Enter a unique name identifier that best

describes the function of the restriction set.

Page 55 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Restriction Entry

This dialog is called via an Add or Edit from the Time/Workstation

Restrictions section of the Edit Restriction Set window. It is organized

into four categories: days-of-week, time, action, and workstation.

Description This property is used to further describe a

restriction set.

Time/Workstation

Restrictions

This list is the portal used to a maintain

each restriction. The maintenance functions

are invoked via the toolstrip buttons, add,

edit, or delete. For reference the list is

grouped by workstation.

� - Displays Restriction Entry

dialog window permitting a new record to

be created.

� - Highlight the desired context

item, in the list, and its contents will be

displayed via the Restriction Entry dialog

for editing.

� - Highlight the desired context

item, in the list, for deletion. A warning

message will be displayed requiring

confirmation before the row will be

deleted.

Page 56 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Restriction Entry

Days of

Week

Select the days of week for the context.

Time Select the time range the context is to be enforced.

The time range cannot overlap with an existing

context's time range.

Action Select the action for this context: deny, grant, or

read-only. The action will override the default action

for the permission based on its contexts: time or

workstation.

Workstation Enter the name of the workstation on which the

context is to be enforced, wildcards are permitted.

If the network is configured where all task specific

machines have a common naming convention a

wildcard can be used. The normal windows wildcard

characters "?" and "*" apply.

Page 57 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

For example, a group of workstations named

FrontDesk1, FrontDesk2, and FrontDesk3 could be

handled by entering "Front?" or "Front*" into the

Workstation field.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Logging into the Application Logging into the Application Logging into the Application Logging into the Application

Purpose: This document discusses how to log into a security-enabled

application.

Logging In

A security-enabled StrataFrame application will generally require a login to

be entered before the application can be accessed. The login form requires

a username and password and can also require a domain name if Windows

authentication is enabled for the application. The following are two

examples of typical login forms:

� A typical StrataFrame Application Login form.

Page 58 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� A typical StrataFrame application login form with Windows

authentication enabled.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Page 59 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Security Documentation Send comments on this topic.

Failed Logins Failed Logins Failed Logins Failed Logins

Purpose: This document discusses the error messages that you could

receive when trying to log in.

Failed Logins

There are several reasons why a user might not be able to login to the

application:

� Invalid user name/password/domain combination

� Deactivated account

� Denied login permission

Invalid UserName/Password/Domain Combination

The following notifications and effects can occur as a result of an

invalid entry of the Username, Password, or Domain:

� Invalid Credentials - When an invalid user name/password/domain

combination is supplied, the user will receive a message similar to the

one shown below indicating that the credentials they provided could

not be authenticated.

� Login Form Retry Delay - In addition to the above message, the login

form will also be disabled for a period of time specified by the password

Page 60 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

input interval in the global preferences. A label on the login form will

display the amount of time that the user must wait before they will be

allowed to attempt another login. This security measure is in place to

help prevent “brute force” password attacks where the attacker tries to

guess the password by repeatedly entering passwords until the guess

one that allows him/her to log into the application.

� Maximum Logins - When a password for a username has been entered

improperly too many times (specified by the max invalid login attempts

global preference), the account will be disabled, and the user will

receive a message indicating so.

Page 61 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Deactivated Account

The following message will occur as a result of a deactivated account:

� Deactivated Account - When an account has been deactivated, the

account is no longer permitted access to login to the application. If a

login for the deactivated account is attempted, the user will be shown a

message indicating that they cannot login to the application as a result

of account deactivation.

Denied Login Permission

The following message will occur as a result of denied login permissions:

� Denied Login Permission - The permission required to login to the

application can be set through the

MicroFour.StrataFrame.Security.Login.LoginSecurityKey property. If

this permission is denied to a user (generally through a restriction set),

then user will be notified that he/she is not allowed to login to the

application at this time and workstation.

Page 62 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Security Keys on Forms and Business Objects Security Keys on Forms and Business Objects Security Keys on Forms and Business Objects Security Keys on Forms and Business Objects

Purpose: This document provides a description of how security keys

assigned to forms and business objects affect the function of the objects

at runtime. For information on how to attach security keys to objects, visit

Assigning Security Keys.

Security Keys on Forms and Business Objects

When a security key is attached to a form or a business object, the

framework verifies that the current user has the requested permission

before permitting access to that permission. Permissions that attach to

business objects and fields should not allow read-only access (read-only

access can be turned off within the Permission Editor for each permission).

The framework will show an access denied message, specified within the

permission itself, when the permission is denied to a requested form or

Page 63 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

business object action. The framework will not disable or hide menu

options that lead to these options, but the menu options can be disabled

programmatically by testing the permissions on the CurrentUser object.

Page 64 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Security Keys on Business Object Fields Security Keys on Business Object Fields Security Keys on Business Object Fields Security Keys on Business Object Fields

Purpose: This document provides a description of how security keys

assigned to business object fields affect bound controls at runtime. For

information on how to attach security keys to business object fields, visit

Assigning Security Keys.

Security Keys on Business Object Fields

Security keys that are assigned to business object fields can be configured

to allow read-only as a possible permission action for the field as bound

controls can easily be made read-only. Like allowing read-only selecting

"Replace Each Character" is only a valid choice for field-level security keys

since the characters can only be replaced when the data is bound to a

field.

The following screen shot displays examples of how each permission

action and/or denied action affects controls bound to a business object.

Page 65 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Session Locking Session Locking Session Locking Session Locking

Purpose: The purpose of this document is to discuss the use of session

locking and how it affects the application when the current user is

changed when the session locks.

Session Locking

Session locking allows the application to be "locked" to require the user to

re-authenticate to continue use of the application. Session locking also

allows the logged in user to be quickly switched, without closing and

restarting the application. When a user re-authenticates, his/her

permissions are re-evaluated from the database, causing objects to which

the user does not have access to be hidden or restricted, this includes

forms, fields, etc.

Locked Forms

When an application is locked and a different user than the previous one

logs back into the system, the new user might not have permission to

view all of the forms that are currently open within the application. For

each form that the new user does not have permission to view, a "form

lock panel" is superimposed over the form to prevent the new user from

having access to the already opened forms.

The locked forms and the entire application are prevented from being

closed so that information is not lost if the previous user had unsaved

changes on a locked. A user with sufficient privileges to view the form

must first log into the system to close the forms before the application can

be closed.

Page 66 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Adding Security to an Application Adding Security to an Application Adding Security to an Application Adding Security to an Application

Purpose: The purpose of this document is to provide step-by-step

instructions on how to implement StrataFrame’s role-based security within

an application.

Adding Security to an Application

To add security to an application:

1. Create your application from the StrataFrame Windows Application w/

Page 67 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Security template – If you do not create your application from the

Windows application template that includes security, you will need to

complete the following steps manually:

a. Add a reference to MicroFour StrataFrame Security.dll – The

MicroFour StrataFrame Security.dll contains the role-based

security implementation and must be referenced by your

application.

b. Show a Login Form to set the CurrentUser – You can either show

the default login form, or create a login form from the Login Form

Template. This login form should be show from within the

ShowLoginAndInitMainForm() method within the AppMain.vb

(Program.cs) file. For more information, refer to Showing the

Initial Login Form.

c. Initialize Session Locking - (optional) – The code required to

initialize session locking should be added to the InitApplication()

method within the AppMain.vb (Program.cs) file. For more

information, refer to Initializing Session Locking.

d. Specify the Security Key for encrypted user data – User data

stored within the database is encrypted using 3DES encryption. A

key must be specified to seed the encryption algorithm. This code

should be added to the InitApplication() method within the

AppMain.vb (Program.cs) file. For more information, refer to

Specifying the Encryption Key for User Data.

e. Specify the SecurityDataSourceKey - (optional) – If the security

tables (SFS* tables) are not located within the database

referenced by the default DataSource, then you must add a

DbDataSourceItem with access to the database containing the

tables, and specify the SecurityDataSourceKey to inform the role-

based security module where the security tables are located. For

more information, refer to Setting the SecurityDataSourceKey.

f. Retrieve global preferences from the database – The global

preferences should be retrieved from the database and stored

within the SecurityBasics class properties. The code to accomplish

this should be placed within the InitApplication() method within

the AppMain.vb (Program.cs) file. For more information, refer to

Retrieving Global Preferences from the Database.

Page 68 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

g. Specify default values – There are additional properties on the

SecurityBasics class that contain default values for your

application and should be configured within the InitApplication()

method of the AppMain.vb (Program.cs) file. These default values

specify everything from the usernames and passwords for built in

accounts to the default denied action and denied message.

2. Add a custom login form - (optional) – Adding a custom login form to

your application is not required, but is recommended because the

base login form does not display an application logo or company logo

of any kind. For more information, refer to Creating a Custom Login

Form.

3. Create permissions for the application within the Role-Based Security

Editor – The permissions for an application must be created at design

time through the Role-Based Security Editor. Once the permissions

are created, they can them be attached to objects within the

application to permission required to access that object. For more

information, refer to the Adding a New Permission and Assigning

Permissions topics.

4. Create Roles and Users for the application within the Role-Based

Security Editor - (optional) – You can optionally create pre-defined

roles and users that can be deployed with your application. These

roles and users must be defined within the Role-Based Security Editor

for your application. For more information, refer to the Adding a New

Role and Adding a New User topics.

5. Assign security keys to objects within your application – Once the

security keys have been defined through the Role-Based security

editor, they must be attached to objects within your application to

define the permission required to access that object. You can assign

permissions to Business Object Fields, Business Object Actions, and

Forms.

6. Programmatically test permissions within your application - (optional)

– You can enable/disable or show/hide objects within your application

by programmatically testing the CurrentUser’s permissions and

adjusting object properties appropriately.

7. Add the ability to show the SecurityDialog within your application –

The SecurityDialog is used within your application to provide a

Page 69 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

maintenance form to your end-users that allows them to maintain

users and roles. For more information, refer to Calling the Security

Maintenance Dialog.

8. Deploy the security data with your database – The SFS* tables within

the StrataFrame database are required for the StrataFrame security

module to operate at runtime. The SFS* tables must exist in a

location that is reachable by your application through one of your

DbDataSourceItems. The Database Deployment Toolkit has the ability

to deploy both the SFS* tables and the data for the tables containing

the users, roles, and permissions you specify. Without the DDT, you

must manually add the SFS* tables to your database script for

deployment and devise a method to deploy the contents of the SFS*

tables in the StrataFrame (design-time) database to your application’s

database at runtime. You only need to gather the records that match

your project, identified by the appropriate record within the

SFSProjects table. For more information, refer to Deploying Security

Data.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Security Key Type Editor Security Key Type Editor Security Key Type Editor Security Key Type Editor

Purpose: This document provides information on using the Security Key

Type Editor to search for security keys and retrieve them from the

database at design-time.

Invoking the Security Key Type Editor

The Security Key Type Editor is used to set the *SecurityKey properties

on business objects, forms, and fields on business objects through the

Business Object Mapper.

The exact properties that support this type editor are:

Page 70 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� Business Object Properties:

� AddSecurityKey

� EditSecurityKey

� DeleteSecurityKey

� QuerySecurityKey

� BaseForm Properties:

� ViewSecurityKey

In order to invoke the type editor on one of these properties, click the ...

button within the box for the property value.

Using the Security Key Type Editor

The Seccurity Key type editor is used to search for a specific security key

(permission key) that has been created through the Security Maintenance

Editor and assign it to a specific property.

Page 71 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

File Group Properties Dialog Fields

Key You can search by either the security key name or the

category name or both.

Category You can search by either the security key name or the

category name or both.

Search Click Search or press the enter key to execute the

search.

Clear The Clear button clears the search results and the

Key: and Category: fields.

Results

List

The results list contains the results of the search. It

displays the Security Key, Category, and Description

of the permission.

Page 72 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Once the security key is located, double-click the record within the results

list or select the record within the results list and click OK.

Status

Bar

The status bar lists the number of results found by the

search.

OK Clicking OK closes the form and enters the selected

security key in the property being edited.

Cancel Clicking Cancel closes the form and does not modify

the value of the property being edited.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

FormFormFormForm----Level Security Keys Level Security Keys Level Security Keys Level Security Keys

Purpose: The purpose of this document is to describe the process of

assigning security keys to forms and describing the results of different

permission actions when a security key is assigned to a form.

ViewSecurityKey Property

The ViewSecurityKey property is used to define the security key that is

required to open a form.

Assigning the Key

Assigning the ViewSecurityKey property can be done through the property

sheet of the form designer or programmatically. The Security Key Type

Editor (link) is used to search for the appropriate security key to assign to

the ViewSecurityKey property.

Page 73 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Sample – Setting the ViewSecurityKey Property [Visual Basic]

Imports MicroFour.StrataFrame.UI.Windows.Forms

...

Public Sub TestSecurity()

 '-Create a new form, set the security key and show it

 Dim loForm As New StandardForm()

 loForm.ViewSecurityKey = "MySecurityKey"

 loForm.Show()

End Sub

Sample – Setting the ViewSecurityKey Property [C#]

using MicroFour.StrataFrame.UI.Windows.Forms;

...

public void TestSecurity()

{

 //-- Create a new form, set the security key and show it

 StandardForm loForm = new StandardForm();

 loForm.ViewSecurityKey = "MySecurityKey";

 loForm.Show();

}

How the ViewSecurityKey Affects a Form at Run-time

Action Result

ViewSecurityKey left

blank

Security is not checked on the form, and the

form is always shown.

ViewSecurityKey set,

permission granted

The user has permission to view the form,

and the form is shown.

Page 74 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

ViewSecurityKey set,

permission denied,

denied action set to

NoMessage

The form is not shown to the end-user and a

MessageForm is shown to the end user

containing the DefaultBlockedMessage .

ViewSecurityKey set,

permission denied,

denied action set to

Message

The form is not shown to the end-user and a

MessageForm is show to the end-user

containing the message assigned within the

SecurityDialog.

ViewSecurityKey set,

permission denied,

denied action set to

MessageKey

The form is not shown to the end-user and a

MessageForm is shown to the end-user

containing a message that is retrieved from

the localization data by the given message

key.

ViewSecurityKey set,

permission denied,

denied action set to

ReplaceEachChar

The form is not shown to the end-user and a

MessageForm is shown to the end-user

containing the DefaultBlockedMessage .

ViewSecurityKey set,

permission set to read-

only

The form is not shown to the end-user and a

MessageForm is shown to the end-user

containing the DefaultBlockedMessage .

ViewSecurityKey set,

user changes while app

is running, permission

denied

The form remains shown, but is covered by a

"Form Locked" panel that prevents the

contents of the form from being displayed.

Additionally, the form cannot be closed until a

user with sufficient rights to view the form

logs back into the application.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Business ObjectBusiness ObjectBusiness ObjectBusiness Object----Level Security Keys Level Security Keys Level Security Keys Level Security Keys

Purpose:The purpose of this document is to describe the process of

assigning security keys to business objects and to describe how the

Page 75 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

framework utilizes these security keys when an action is requested by the

end-user.

Business Object Security Keys

� AddSecurityKey - Defines the permission that is required to add a new

record to a business object.

� DeleteSecurityKey - Defines the permission that is required to delete a

record from a business object.

� EditSecurityKey - Defines the permission that is required to edit a

record on the business object.

� QuerySecurityKey - Defines the permission that is used to determine

whether SQL queries that are processed through this business object

should be audited.

Like all business object properties, the business object security key

properties can be set within the component designer for the business

object to affect all instances of the business object, or set directly on an

instance of a business object that has been dropped on a form to set the

property for that one instance only.

Assigning the Key

Assigning the business object security key properties can be done through

the property sheet of the business object’s component designer or

programmatically. The Security Key Type Editor is used to search for the

appropriate security key to assign to the values for the properties.

Sample - Business Object Security Keys [Visual Basic]

Public Sub TestSecurity()

 '-Create a new business object

Page 76 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 Dim loBo As New MyBusinessObject()

 '-Test the Add security

 loBo.AddSecurityKey = "MyAddSecurityKey"

 loBo.Add()

 '-Test the Edit security

 loBo.EditSecurityKey = "MyEditSecurityKey"

 loBo.Edit()

 '-Test the Delete security

 loBo.DeleteSecurityKey = "MyDeleteSecurityKey"

 loBo.DeleteCurrentRow()

End Sub

Sample - Business Object Security Keys [C#]

public void TestSecurity()

{

 //-- Create a new business object

 MyBusinessObject loBo = new MyBusinessObject();

 //-- Test the Add security

 loBo.AddSecurityKey = "MyAddSecurityKey";

 loBo.Add();

 //-- Test the Edit security

 loBo.EditSecurityKey = "MyEditSecurityKey";

 loBo.Edit();

 //-- Test the Delete security

 loBo.DeleteSecurityKey = "MyDeleteSecurityKey";

 loBo.DeleteCurrentRow();

}

How the Security Keys Affect Business Objects at Run-time

Each security key property has a corresponding method that performs an

action on the business object (AddSecurityKey affects calls to Add(),

EditSecurityKey affects calls to Edit()). These methods, Add(), Edit(), and

DeleteCurrentRow() have overloads that accept Boolean value that

Page 77 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

indicate whether the business object should check the current user’s

permissions before performing the action. The default overload checks the

users permissions.

When the security is checked, and the permission is denied, the

SecurityDenied event will be raised. This event is automatically handled by

the StandardForm class to show a message to the end user depending

upon the denied action of the requested permission. This automation can

be disabled so that you can handle the denying of the requested action

manually.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

FieldFieldFieldField----Level Security Keys Level Security Keys Level Security Keys Level Security Keys

Purpose: The purpose of this document is to describe the process of

assigning security keys to fields on business objects and describing how

bound controls are affected fields that have a security key assigned to

them.

Field-Level Security Keys

The security keys assigned to fields within a business object are stored

within a shared dictionary that is declared within the partial class for each

business object type. This allows the collection of keys to be shared across

business object instances that are the same type.

Assigning Field-Level Keys using the BOMapper

The Business Object Mapper is used to assign security keys to fields within

a business object.

To assign a security key to a field:

1. Open the Visual Studio solution for your application.

Page 78 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

2. Select Business Object Mapper from the StrataFrame menu.

3. All created business objects will be available in the left panel under

their associated project. Select the desired business object from the

available options.

4. The fields for the selected business object will become available in the

right panel. Select the desired field from the available options.

5. Edit the Custom Field Properties by right-clicking on the field and

selecting Customize Field... from the context menu

OR

Clicking the Customize Field command button.

6. The security key is entered in the Security Key text box. Type the

security key in the Security Key textboxo

OR

Click the browse (...) button to bring up the Security Key Type Editor

to browse for the security key.

7. Click OK to confirm the changes.

Note: More information on editing custom field properties within the

Business Object Mapper can be found in the Business Layer section of

the StrataFrame help file.

Page 79 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Assigning Security Keys Programmatically

The recommended method of assigning security keys programmatically is

to override the GetCustomBindablePropertyDescriptors() method within a

business object to return a collection of property descriptors that describe

the custom properties that belong to the business object. This method is

only called once per business object type, so it is the most logical place to

programmatically set the security keys for fields within the business

object.

Note: Programmatically setting the security keys for properties is

normally only required when you create a custom property and need to

set the security key for that custom property. Since you will need to use

the GetCustomBindablePropertyDescriptors() method to return the

property descriptor for the custom property, it is logical to also set the

security key for the custom property within this method.

Sample - Setting the Security Key on a Custom Property Programmatically

[Visual Basic]

Imports MicroFour.StrataFrame.Business

...

Protected Overrides Function GetCustomBindablePropertyDescriptors() As FieldPropertyDescriptor()

 '-- Set the security key for the custom field property

 _FieldPermissionKeys.Add("MyCustomField", "MySecurityKey")

 '-- Return the property descriptor for the custom field

 Return New FieldPropertyDescriptor() {New ReflectionPropertyDescriptor(_

 "MyCustomField", Me.GetType())}

End Function

Sample - Setting the Security Key on a Custom Property Programmatically

[C#]

using MicroFour.StrataFrame.Business;

...

protected override FieldPropertyDescriptor[] GetCustomBindablePropertyDescriptors()

{

 //-- Set the security key for the custom field property

 _FieldPermissionKeys.Add("MyCustomField", "MySecurityKey");

Page 80 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 //-- Return the property descriptor for the custom field

 return new FieldPropertyDescriptor[] {new ReflectionPropertyDescriptor(

 "MyCustomField", Me.GetType())};

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Retrieving Global Preferences from the Database Retrieving Global Preferences from the Database Retrieving Global Preferences from the Database Retrieving Global Preferences from the Database

Purpose: This document describes the process of retrieving the global

preferences from the database for use within the application.

Overview

All global preferences are stored within the

MicroFour.StrataFrame.Security.SecurityBasics static class. The

properties are stored in the database within the SFSPreferences table.

Retrieving Global Preferences from the Database

A shared (static) method is provided to retrieve global preferences from

the database. Executing

MicroFour.StrataFrame.Security.BusinessObjects.SFSPreferencesBO.RetrieveSecurityPreferences

() retrieves the preferences from the SFSPreferences table in the

database and populates the properties in the SecurityBasics class.

Global Preferences Properties

The global preferences are accessed through the following properties on

the SecurityBasics class:

Property Database Field

Page 81 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

AllowWindowsAuth sp_AlowWindowsAuth

InvalidLogonRetryDelay sp_WaitTimeAfterLogonFailure

MaximumInvalidLogonAttempts sp_MaxInvalidLogonAttempts

MaximumInvalidLogonAttemptsTime sp_MaxInvalidLogonAttemptsTime

PasswordMaximumAge sp_PwMaxAge

PasswordMaximumLength sp_PwMaxLength

PasswordMinimumAge sp_PwMinAge

PasswordMinimumLength sp_PwMinLength

PasswordMustBeComplex sp_PwAreComplex

Page 82 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

SessionTimeout sp_SessionTimeout

UniquePasswordsBeforeRepeat sp_PwBeforeRepeat

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Showing the Initial Login Form Showing the Initial Login Form Showing the Initial Login Form Showing the Initial Login Form

Purpose: This document describes the steps necessary to show the initial

logon form of a StrataFrame application.

Showing the Login Form

Showing the initial login form within a StrataFrame application is

accomplished through the MicroFour.StrataFrame.Security.Login class.

This class has a LoginFormType property that accepts the System.Type of

the form that will be shown as the login form. This form type defaults to

MicroFour.StrataFrame.Security.LoginForm and can be set to any custom

login form that implements the

MicroFour.StrataFrame.Security.ILoginForm interface.

Once the LoginFormType has been set (or left to the default value), you

can call the Login.ShowLoginAndAuthUser() method to show the login

Page 83 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

form and authenticate a user into the system. The method will return a

Boolean value indicating whether the end-user was authenticated or

he/she canceled out of the form and the application should exit.

The ShowLoginAndInitForm() Method

The ShowLoginAndInitMainForm() method within the AppMain.vb

(Program.cs) file is provided to give a location to show the initial login

form for the application. The following sample shows how to show the

login form for the application.

Sample - Showing the Initial Login Form [Visual Basic]

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Shared Sub ShowLoginAndInitMainForm(_

 ByVal e As ShowLoginAndInitFormEventArgs)

 '-- Set the login form type to the appropriate form type (optional)

 Login.LoginFormType = GetType(MyLoginForm)

 '-- Show the login form and set the return value back to e.ShowMainForm

 ' The true value passed to the method tells the method to allow the

 ' end-user to cancel the login form, which will return False from the

 ' method.

 e.ShowMainForm = Login.ShowLoginAndAuthUser(True)

End Sub

Sample - Showing the Initial Login Form [C#]

using MicroFour.StrataFrame.Security;

...

private static void ShowLoginAndInitMainForm(ShowLoginAndInitFormEventArgs e)

{

 //-- Set the login form type to the appropriate form type (optional)

 Login.LoginFormType = typeof(MyLoginForm);

 //-- Show the login form and set the return value back to e.ShowMainForm

 // The true value passed to the method tells the method to allow the

 // end-user to cancel the login form, which will return False from the

Page 84 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 // method.

 e.ShowMainForm = Login.ShowLoginAndAuthUser(true);

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Initializing Session Locking Initializing Session Locking Initializing Session Locking Initializing Session Locking

Purpose: This document describes the code required to initialize the

session locking feature of the StrataFrame Security module.

Initializing Session Locking

The SessionLock class contains the code necessary to enable the session

locking feature of the StrataFrame Security module. The

SessionLock.StartSessionMonitoring() method is used to insert the low-

level API hooks into the Windows process to allow the SessionLock class to

track user input and monitor the session timeout. The full details of the

SessionLock class can be found here.

In addition to inserting the low-level hooks and starting the session

monitoring, the session lock class contains the SessionLockKey property

that allows you to specify a key or key combination that can be used to

quickly lock the application on a terminal just as if the end-user’s session

had timed out.

The following sample shows the code that should be added to the

InitApplication() method within the AppMain.vb (Program.cs) file to start

the session monitoring and enable session locking within the application.

Sample - Starting Session Monitoring [Visual Basic]

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Shared Sub InitApplication(ByVal e As InitializingApplicationEventArgs)

Page 85 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 '-- Add the low-level hooks to start the session monitoring

 SessionLock.StartSessionMonitoring()

 '-- Set the quick lock key to F11 (or any other key)

 SessionLock.SessionLockKey = Keys.F11

End Sub

Sample - Starting Session Monitoring [C#]

using MicroFour.StrataFrame.Security;

...

private static void InitApplication(InitializingApplicationEventArgs e)

{

 //-- Initialize the session locking

 SessionLock.StartSessionMonitoring();

 SessionLock.SessionLockKey = Keys.F11;

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Specifying the Encryption Key for User Data Specifying the Encryption Key for User Data Specifying the Encryption Key for User Data Specifying the Encryption Key for User Data

Purpose: This document describes the process of specifying the

encryption key used to encrypt the user data for users stored in the

StrataFrame security tables.

Specifying the Encryption Key for User Data

User data is stored within the SFSUsers database table using 3DES

encryption. The key for the 3DES encryption is specified by using the

SecurityBasics.SetSecurityKeyAndVectorForUserAuthentication() method.

This method creates a hash of the given key and uses it at the

System.Byte[] that is used for the encryption key and the initialization

Page 86 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

vector of the 3DES algorithm.

If you are deploying users as initial data to your application’s database

(users that were created at design-time using the StrataFrame Role-based

security editor), then the string value that is passed to the

SetSecurityKeyAndVectorForUserAuthentication method must be the same

value as that specified as the security key for the security project.

The SetSecurityKeyAndVectorForUserAuthentication method is generally

called from the InitApplication() method within the AppMain.vb

(Program.cs) file. The following sample illustrates the use of this method.

Sample - Calling SetSecurityKeyAndVectorForUserAuthentication() [Visual

Basic]

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Shared Sub InitApplication(ByVal e As InitializingApplicationEventArgs)

Page 87 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 '-- Set the security key for the user data encryption

 SecurityBasics.SetSecurityKeyAndVectorForUserAuthentication("MyKey")

End Sub

Sample - Calling SetSecurityKeyAndVectorForUserAuthentication() [C#]

using MicroFour.StrataFrame.Security;

...

private static void InitApplication(InitializingApplicationEventArgs e)

{

 '-- Set the security key for the user data encryption

 SecurityBasics.SetSecurityKeyAndVectorForUserAuthentication("MyKey");

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Setting the SecurityDataSourceKey Setting the SecurityDataSourceKey Setting the SecurityDataSourceKey Setting the SecurityDataSourceKey

Purpose: This document describes the process needed to set the data

source key that is used to access the StrataFrame security tables.

Setting the SecurityDataSourceKey

The StrataFrame security module requires access to the StrataFrame

security tables within some SQL Server database. The

SecurityBasics.SecurityDataSourceKey property specifies the key of the

DbDataSourceItem that will be used to access the StrataFrame security

tables. If the StrataFrame security tables are included within your

application's database and the data source key for the database is the

default of System.String.Empty (""), then the

SecurityBasics.SecurityDataSourceKey does not need to be set because it

defaults to an empty string (""). However, if you place the StrataFrame

security tables in a database that is outside the application's main

Page 88 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

database or in a database that is accessed using a different data source

key, then the SecurityBasics.SecurityDataSourceKey property must be set

to the proper value for the application framework to access the security

tables.

The SecurityBasics.SecurityDataSourceKey is generally set anywhere

within either the SetDataSources() method or the InitApplication()

method, both of which can be found within the AppMain.vb (Program.cs)

file. The following sample shows how to set the SecurityDataSourceKey

property within the SetDataSources() method.

Sample - Setting the SecurityDataSourceKey Property [Visual Basic]

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Shared Sub SetDataSources()

 '-- Set the data sources for the application

 DataLayer.DataSources.Add(New SqlDataSourceItem("", "main connstring"))

 DataLayer.DataSources.Add(New SqlDataSourceItem("SECURITY", "security connstring"))

 '-- Set the SecurityDataSourceKey property to indicate the data source that

 ' will be used to access the StrataFrame security tables

 SecurityBasics.SecurityDataSourceKey = "SECURITY"

End Sub

Sample - Setting the SecurityDataSourceKey Property [C#]

using MicroFour.StrataFrame.Security;

...

private static void SetDataSources()

{

 //-- Set the data sources for the application

 DataLayer.DataSources.Add(New SqlDataSourceItem("", "main string"));

 DataLayer.DataSources.Add(New SqlDataSourceItem("SECURITY", "security string"));

 //-- Set the SecurityDataSourceKey property to indicate the data source that

 // will be used to access the StrataFrame security tables

 SecurityBasics.SecurityDataSourceKey = "SECURITY";

}

Page 89 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Retrieving Global Preferences from the Database Retrieving Global Preferences from the Database Retrieving Global Preferences from the Database Retrieving Global Preferences from the Database

Purpose: This document describes the process of retrieving the global

security preferences from the database and storing them in the proper

shared (static) properties of the SecurityBasics class.

Retrieving Global Preferences

Global preferences are stored within the database in the SFSPreferences

table; however, all global preferences are referenced through shared

(static) properties on the SecurityBasics class. The

MicroFour.StrataFrame.Security.BusinessObjects.SFSPreferencesBO.RetrieveSecurityPreferences

() method is provided to retrieve all of the global security preferences

from the SFSPreferences table and store them in the appropriate

properties on the SecurityBasics class. For more information on the global

preferences, click here.

The RetrieveSecurityPreferences() method should be called after the

SecurityDataSourceKey property is set to ensure that the

SFSPreferencesBO object can access the SFSPreferences table. The

RetrieveSecurityPreferences() method is generally called within the

InitApplication() method of the AppMain.vb (Program.cs) file. The

following sample shows an example of calling the

RetrieveSecurityPreferences() method.

Sample - RetrieveSecurityPreferences() [Visual Basic]

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Shared Sub InitApplication(ByVal e As InitializingApplicationEventArgs)

 '-- Retrieve the security preferences

 SFSPreferencesBO.RetrieveSecurityPreferences()

End Sub

Page 90 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Sample - RetrieveSecurityPreferences() [C#]

using MicroFour.StrataFrame.Security.BusinessObjects;

...

private static void InitApplication(InitializingApplicationEventArgs e)

{

 //-- Retrieve the security preferences

 SFSPreferencesBO.RetrieveSecurityPreferences();

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

CurrentUser Overview CurrentUser Overview CurrentUser Overview CurrentUser Overview

Purpose: This document provides an overview of the use of the

SecurityBasics.CurrentUser property that contains an object reference to

the currently logged in user for the application.

CurrentUser Overview

The MicroFour.StrataFrame.Security.SecurityBasics.CurrentUser property

contains an object reference to the currently logged on user for the

application. This property defaults to an instance of the

MicroFour.StrataFrame.Security.AdminUser class so that all permissions

will be granted unless the CurrentUser is set to another object. This

default functionality provides support for the application framework when

security is not being used by the application.

The SecurityBasics.CurrentUser property returns an object reference that

implements the MicroFour.StrataFrame.Security.ISecurityUser interface.

This interface describes methods and properties that can be used to

access:

Page 91 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� User's primary key (UserID or UserPK)

� User's login name

� User's login time

� User's session lockout time

� User's permissions

For more information on accessing the current user’s permissions, see

Accessing Permissions Programmatically, and for more information on

accessing the user’s properties, see Accessing CurrentUser Information.

The classes within the StrataFrame application framework and the

StrataFrame security module that implement the ISecurityUser interface

are:

� AdminUser - When the built-in administrator credentials are used to log

into the application.

� SecurityMaintenanceUser - When the built-in security maintenance

credentials were used to log into the application.

� LoggedInUser - When a standard user’s credentials were used to log

into the application.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Accessing Permissions Programmatically Accessing Permissions Programmatically Accessing Permissions Programmatically Accessing Permissions Programmatically

Purpose: This document describes how to programmatically access the

current user’s permissions.

PermissionInfo Class

The MicroFour.StrataFrame.Security.PermissionInfo class contains all of

Page 92 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

the information needed to describe a permission that is assigned to a

user, including the action to take, and the blocked message if necessary.

When you access an assigned permission at runtime, a PermissionInfo

object will be returned. The permission info class contains the following

properties:

CurrentUser.GetPermission()

The MicroFour.StrataFrame.Security.SecurityBasics.CurrentUser contains

the GetPermission() method that is used to programmatically retrieve the

PermissionInfo for a given permission key. The method accepts a single

string parameter that indicates the permission key for which you want to

retrieve the PermissionInfo. Once the permission info is retrieved, you can

determine the action that should be performed.

Sample – GetPermission() [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub CheckMyPermission()

 '-- Retrieve the permission and test it

 If SecurityBasics.CurrentUser.GetPermission("MyPerm").Action = _

 PermissionAction.Grant Then

Property Description

Action The PermissionAction that determines that

action that should be taken for this permission

(Grant, Deny, Read-only.)

BlockedMessageOrKey The message that will be shown to the end-

user if the Action is Deny and the DenyAction

property is either Message or MessageKey. If

the DenyAction is Message, then this property

is the actual message. If the DenyAction is

MessageKey, then this property contains the

localization key that will be used to retrieve the

message.

DenyAction The specific action to perform if the Action is

Deny to inform the end-user that their access

is denied. Possible values are NoMessage,

Message, MessageKey, or ReplaceEachChar.

Page 93 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 '-- Enable the control

 Button1.Enabled = True

 Else

 '-- Disable the control

 Button1.Enabled = False

 End If

End Sub

Sample – GetPermission() [C#]

using MicroFour.StrataFrame.Security;

...

private void CheckMyPermission()

{

 //-- Retrieve the permission and test it

 if (SecurityBasics.CurrentUser.GetPermission(@"MyPerm").Action ==

 PermissionAction.Grant)

 {

 //-- Enable the control

 Button1.Enabled = true;

 }

 else

 {

 //-- Disable the control

 Button1.Enabled = false;

 }

}

Determining Permissions

When a user logs into the system, a flat list of his/her permissions is

compiled according to the permissions assigned to the user through

his/her assigned roles and directly assigned permissions. The permission

granted to the user is determined by the hierarchy of the assigned

permissions (link). If the permission is not assigned to the user, then the

default permission is assigned.

Page 94 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Accessing CurrentUser Information Accessing CurrentUser Information Accessing CurrentUser Information Accessing CurrentUser Information

Purpose: This document describes how to access information relevant to

the CurrentUser within the application.

CurrentUser Members

The MicroFour.StrataFrame.Security.SecurityBasics.CurrentUser property

returns an ISecurityUser object that can be used to access information

about the currently logged in user. The following members provide access

to the common information:

Member Description

GetUserLockoutTime()

Method

Retrieves a System.TimeSpan indicating the

amount of idle time the system will wait

before the user’s session times out and locks.

LoggedOnAt Property Gets a Date that indicates the timestamp of

when the user logged into the application.

UserName Property Gets the username that identifies the user

(the login name, not the full name).

UserPK Property Gets the primary key that uniquely identifies

the user (UserID).

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Page 95 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Accessing Information for Users other than the Current User Accessing Information for Users other than the Current User Accessing Information for Users other than the Current User Accessing Information for Users other than the Current User

Purpose: This document shows how to retrieve user information from the

security database for display or reporting purposes.

Accessing Information for Users other than the
CurrentUser

There are times when it is necessary to retrieve information for a user

that is different than the current user. For instance, the primary key of the

user that performed an inventory operation is recorded within the

database. When a report is created detailing the inventory operation, the

user’s username or full name might be retrieved so that it can be added to

the report.

The MicroFour.StrataFrame.Security.BusinessObjects.SFSUsersBO

business object contains static (shared) methods that allow user

information to be retrieved:

Accessing Additional Information

Additional information beyond the user’s login name and the full name of

the user is stored within the us_Data field in the database. This field is

encrypted and the pieces of data stored within the field can only be

accessed by accessing them through the strong-typed properties on the

SFSUsersBO business object. Therefore, to access additional information,

you must create a new instance of the SFSUsersBO business object,

populate it with the appropriate user record(s), and access the data

through that business object.

Sample – Accessing Additional User Data [Visual Basic]

Method Description

RetrieveUserName

()

Accepts a user primary key and returns the user

name (login name) for the user.

RetrieveFullName

()

Accepts a user primary key and a Boolean value

indicating whether the last name should be

displayed first and returns the full name for the

user.

Page 96 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Imports MicroFour.StrataFrame.Security

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Sub ShowUserData(ByVal UserPK As Integer)

 '-- Create the user business object

 Dim user As New SFSUsersBO()

 '-- Get the user

 user.FillByPrimaryKey(UserPK)

 '-- Display the user's password and expiration

 MsgBox("Password: " & user.us_PasswordPlainText & ControlChars.CrLf & _

 "Never Expires: " & user.us_PasswordNeverExpires.ToString())

 '-- Dispose of the bo

 user.Dispose()

End Sub

Sample – Accessing Additional User Data [C#]

using MicroFour.StrataFrame.Security;

using MicroFour.StrataFrame.Security.BusinessObjects;

...

private void ShowUserData(int UserPK)

{

 //-- Create the user business object

 SFSUsersBO user = new SFSUsersBO();

 //-- Get the user

 user.FillByPrimaryKey(UserPK);

 //-- Display the user's password and expiration

 MessageBox.Show("Password" + user.us_PasswordPlainText + "\n" +

 "Never Expires: " + user.us_PasswordNeverExpires.ToString());

 //-- Dispose of the bo

 user.Dispose();

}

Page 97 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

BuiltBuiltBuiltBuilt----In Accounts In Accounts In Accounts In Accounts

Purpose: This document provides information on configuring and using

the built-in accounts within the StrataFrame security module.

Built-In Accounts

The StrataFrame security module allows you to specify the username and

password for two built-in accounts to the application. The build-in

accounts are disabled by default and both the username and password

must be specified in order for the account to be active.

Administrator Account

The first account is an administrator account that has access to everything

within the application (every permission is granted). This user is the

default user that is set to the CurrentUser property (therefore, if the

security module is not used, everything within the application is

accessible). The built-in administrator account is generally used as a back

door to the application.

Tip: It is generally recommended that the administrator’s password not

be a constant; an algorithm that calculates the password according to

the day of the year or time of day is much more secure.

Security Maintenance Account

The second account is a security maintenance account that provides

access to only the portions of the application that are used to maintain

user information. This account is generally used as a bootstrap for the

initial setup of the users for the application (so you do not have to deploy

any initial users for the application).

Page 98 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Configuring the Built-In Accounts

Configuring the built-in accounts requires 3 steps:

1. Set the account username.

2. Set the account password.

3. Specify the pseduo primary key (user id) for the built-in account.

Sample – Configuring the Built-In Accounts [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Shared Sub InitApplication(ByVal e As InitializingApplicationEventArgs)

 '-- Configure the Administrator Account

 SecurityBasics.AdministratorUserName = "admin"

 SecurityBasics.AdministratorPassword = "pass" & DateTime.Now.Day.ToString()

 SecurityBasics.AdministratorUserPk = -1

 '-- Configure the security maintenance user

 SecurityBasics.SecurityMaintenanceUserName = "securitysetup"

 SecurityBasics.SecurityMaintenancePassword = "security"

 SecurityBasics.SecurityMaintenanceUserPk = -2

End Sub

Sample – Configuring the Built-In Accounts [C#]

using MicroFour.StrataFrame.Security;

...

private static void InitApplication(InitializingApplicationEventArgs e)

{

 //-- Configure the Administrator Account

 SecurityBasics.AdministratorUserName = "admin";

 SecurityBasics.AdministratorPassword = "pass" + DateTime.Now.Day.ToString();

 SecurityBasics.AdministratorUserPk = -1;

 //-- Configure the security maintenance user

 SecurityBasics.SecurityMaintenanceUserName = "securitysetup";

 SecurityBasics.SecurityMaintenancePassword = "security";

 SecurityBasics.SecurityMaintenanceUserPk = -2;

}

Page 99 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Default Settings Default Settings Default Settings Default Settings

Purpose: This document indicates the default values for most of the

properties on the SecurityBasics class.

SecurityBasics Default Property Values

The following table lists the default values for the properties on the

SecurityBasics class.

Property Default Value

AdministratorPassword String.Empty ("")

AdministratorUserName "Administrator"

AdministratorUserPk -1

AllowWindowsAuth False

BlockedReplacementCharacter 'x'

BlockedReplacementRegex [A-Za-z0-9@]

CurrentUser AdminUser

DefaultBlockedMsg "Access Denied"

DefaultBlockedMsgKey String.Empty ("")

DefaultPermissionAction Grant

DefaultPermissionInfo PermissionInfo.GrantedInfo

InvalidLoginRetryDelay 5 seconds

Page 100 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

MaximumInvalidLoginAttempts 4

MaximumInvalidLoginAttemptsTime 5 minutes

PasswordMaximumAge 42 days

PasswordMaximumLength 16

PasswordMinimumAge 2 days

PasswordMinimumLength 5

PasswordMustBeComplex True

SecurityDataSourceKey String.Empty ("")

SecurityKey New Byte() {}

SecurityKeyVector New Byte() {}

SecurityMaintenanceKeyPrefix "Security_"

SecurityMaintenancePassword String.Empty ("")

SecurityMaintenanceUserName "AdminSecurity"

SecurityMaintenanceUserPk -2

SessionTimeout 30 minutes

UniquePasswordsBeforeRepeat 10

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Login Class Methods Login Class Methods Login Class Methods Login Class Methods

Purpose: This document describes the use of the Login class and its

methods.

Page 101 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Login Class Methods

The MicroFour.StrataFrame.Security.Login class is a sealed, static class

that contains shared (static) methods that are used to authenticate users

against the security system. There are 4 main methods within the Login

class that you will use most often:

� AuthenticateUser()

� SetLoggedInUser()

� ShowLoginAndAuthUser()

� ShowPasswordChangeForm()

AuthenticateUser()

The AuthenticateUser() method accepts a users credentials and returns a

LoginResult of the authentication results. It does not change the

SecurityBasics.CurrentUser object, but instead returns a new

SFSUsersBO object through the ByRef (ref) UserInfo parameter

containing the information on the current user if the user was successfully

authenticated.

Sample - Authenticating a User [Visual Basic]

Imports MicroFour.StrataFrame.Security

Imports MicroFour.StrataFrame.Security.BusinessObjects

...

Private Sub AuthUser(ByVal UserName As String, ByVal Password As String)

 '-- Establish locals

 Dim loUserInfo As SFSUsersBO = Nothing

 Dim loResult As Login.LoginResult

 '-- Attempt to authenticate the user

 loResult = Login.AuthenticateUser(UserName, Password, "", loUserInfo)

 '-- Do something based upon the result

 Select Case loResult

 Case Login.LoginResult.Success

 Case Login.LoginResult.Failure

Page 102 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 Case Login.LoginResult.UserDeactivated

 ...

 End Select

End Sub

Sample - Authenticating a User [C#]

using MicroFour.StrataFrame.Security;

using MicroFour.StrataFrame.Security.BusinessObjects;

...

private void AuthUser(string UserName, string Password)

{

 //-- Establish locals

 SFSUsersBO loUserInfo = null;

 Login.LoginResult loResult;

 //-- Attempt to authenticate the user

 loResult = Login.AuthenticateUser(UserName, Password, "", ref loUserInfo);

 //-- Do something based upon the result

 switch (loResult)

 {

 case Login.LoginResult.Success:

 case Login.LoginResult.Failure:

 case Login.LoginResult.UserDeactivated:

 ...

 }

}

SetLoggedInUser()

The SetLoggedInUser() method accepts a user's credentials and returns a

LoginResult of the authentication results. This method will also set the

CurrentUser object to the appropriate LoggedInUser, AdminUser, or

SecurityMaintenanceUser object if the user is successfully authenticated.

Sample - Programmatically Changing the Current User [Visual Basic]

Page 103 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Imports MicroFour.StrataFrame.Security

...

Private Sub SetUser(ByVal UserName As String, ByVal Password As String)

 '-- Establish locals

 Dim loResult As Login.LoginResult

 '-- Attempt to authenticate the user

 loResult = Login.SetLoggedInUser(UserName, Password, "")

 '-- If the result if Success, AdminLoggedOn, or SecMaintUserLoggedOn, the

 ' SecurityBasics.CurrentUser object will be changed to the correct user

 '-- Do something based upon the result

 Select Case loResult

 Case Login.LoginResult.Success

 Case Login.LoginResult.Failure

 Case Login.LoginResult.UserDeactivated

 ...

 End Select

End Sub

Sample - Programmatically Changing the Current User [C#]

using MicroFour.StrataFrame.Security;

...

private void SetUser(string UserName, string Password)

{

 //-- Establish locals

 Login.LoginResult loResult;

 //-- Attempt to authenticate the user

 loResult = Login.SetLoggedInUser(UserName, Password, "");

 //-- If the result if Success, AdminLoggedOn, or SecMaintUserLoggedOn, the

 // SecurityBasics.CurrentUser object will be changed to the correct user

 //-- Do something based upon the result

 switch (loResult)

 {

 case Login.LoginResult.Success:

Page 104 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 case Login.LoginResult.Failure:

 case Login.LoginResult.UserDeactivated:

 ...

 }

}

ShowLoginAndAuthUser()

The ShowLoginAndAuthUser() method is used to display the LoginForm

currently set as the Login.LoginFormType to the end-user, gather the

user's credentials, authenticate the user, and set the CurrentUser object

to the appropriate user object. This method accepts a Boolean parameter

that determines whether the end-user should be allowed to cancel out of

the form to close the application. It is generally called from within the

ShowLoginAndInitMainForm() method of the AppMain.vb (program.cs)

file.

Sample - Showing a Login Form [Visual Basic]

Private Shared Sub ShowLoginAndInitMainForm(ByVal e As ShowLoginAndInitFormEventArgs)

 '-- Set the login form to your custom login form (optional)

 Login.LoginFormType = GetType(MyCustomLoginForm)

 '-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(True)

End Sub

Sample - Showing a Login Form [C#]

private static void ShowLoginAndInitMainForm(ShowLoginAndInitFormEventArgs e)

{

 //-- Set the login form to your custom login form (optional)

 Login.LoginFormType = typeof(MyCustomLoginForm);

 //-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(true);

}

ShowPasswordChangeForm()

Page 105 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

The ShowPasswordChangeForm() method shows a password change

dialog to the end-user to allow them to change their password. All security

preferences are followed when the end-user attempts to set their

password (password history, max length, min length, complexity, etc.).

This method returns a Boolean value indicating whether the end-user's

password was successfully changed or whether the user canceled out of

the form.

Sample - Showing the Password Change Dialog [Visual Basic]

Private Function ChangeUsersPassword() As Boolean

 Return Login.ShowPasswordChangeForm()

End Function

Sample - Showing the Password Change Dialog [C#]

private bool ChangeUsersPassword()

{

 return Login.ShowPasswordChangeForm();

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Login Class Properties Login Class Properties Login Class Properties Login Class Properties

Purpose: This document describes properties available within the Login

class.

Login Class Properties

The Login class contains two shared (static) properties that can be used to

control settings pertaining to the logging of users into your application.

Page 106 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� LoginFormType

� LoginSecurityKey

LoginFormType

The LoginFormType property gets or sets a System.Type object that

represents the form type of the login form that will be presented to the

end-user to gather the user's credentials. The default value for this

property is MicroFour.StrataFrame.Security.LoginForm which is the

included login form. If you create a custom login form for your application

you will need to set this property to your custom login form type before

the first call to a StrataFrame security method that will show a login form.

Sample - Setting the LoginFormType before the First Call to

ShowLoginAndAuthUser [Visual Basic]

Private Shared Sub ShowLoginAndInitMainForm(ByVal e As ShowLoginAndInitFormEventArgs)

 '-- Set the login form to your custom login form (optional)

 Login.LoginFormType = GetType(MyCustomLoginForm)

 '-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(True)

End Sub

Sample - Setting the LoginFormType before the First Call to

ShowLoginAndAuthUser [C#]

private static void ShowLoginAndInitMainForm(ShowLoginAndInitFormEventArgs e)

{

 //-- Set the login form to your custom login form (optional)

 Login.LoginFormType = typeof(MyCustomLoginForm);

 //-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(true);

}

LoginSecurityKey

The LoginSecurityKey property gets or sets the key of the permission that

is required for users to be allowed to login to the application. The default

Page 107 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

value for this property is an empty string ("") which ensures that it will

always be Granted to the CurrentUser object.

It is not recommended to globally control whether a user can log into the

application (you should deactivate a user to completely prevent them from

logging in) but is meant to be used in conjunction with a restriction set to

limit where (workstation) and when (hours of operation) the user can log

into the application. To use this property, you must create a permission

within the application's permissions and specify the name when setting

this property.

Sample - Setting the LoginFormType before the First Call to

ShowLoginAndAuthUser [Visual Basic]

Private Shared Sub ShowLoginAndInitMainForm(ByVal e As ShowLoginAndInitFormEventArgs)

 '-- Set the permission required to login to the application

 Login.LoginSecurityKey = "MyLoginKey"

 '-- Set the login form to your custom login form (optional)

 Login.LoginFormType = GetType(MyCustomLoginForm)

 '-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(True)

End Sub

Sample - Setting the LoginFormType before the First Call to

ShowLoginAndAuthUser [C#]

private static void ShowLoginAndInitMainForm(ShowLoginAndInitFormEventArgs e)

{

 //-- Set the permission required to login to the application

 Login.LoginSecurityKey = "MyLoginKey";

 //-- Set the login form to your custom login form (optional)

 Login.LoginFormType = typeof(MyCustomLoginForm);

 //-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(true);

}

Page 108 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Login.LoginResult Enumeration Login.LoginResult Enumeration Login.LoginResult Enumeration Login.LoginResult Enumeration

Purpose: This document indicates the enumeration values for

Login.LoginResult.

Login.LoginResult Enumeration

The following table lists the enumeration values for Login.LoginResult.

Value Description

Success Indicates that the user was successfully

authenticated. This value is only returned for

users that are contained within the database,

not the built-in users.

Failure Indicates that the user was not successfully

authenticated. Either the username or

password was incorrect.

UserDeactivated Indicates that the user is inactive or was

deactivated. The given

username/password/domain combination was

valid, but the user was already inactive or

expired, and was therefore deactivated.

InvalidLoginsExceeded Indicates that the same username failed to

authenticate and exceeded the maximum

number of failed authentications within the

allotted time. The account was subsequently

deactivated.

AdminLoggedOn Indicates that the built-in admin

username/password was supplied and

successfully authenticated.

SecMaintUserLoggedOn Indicates that the build-in security

Page 109 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

maintenance username/password was

supplied and successfully authenticated.

LoginPermissionDenied Indicates that the given

username/password/domain is valid, but the

permission required to login

(Login.LoginSecurityKey) was denied to the

user.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

SessionLock Methods SessionLock Methods SessionLock Methods SessionLock Methods

Purpose: This document discusses the SessionLock class's methods and

using them to control the current user's session.

SessionLock Methods

The MicroFour.StrataFrame.Security.SessionLock class is a sealed, static

class that contains shared (static) methods that are used to lock the

application session allowing quick user switching and monitor idle user

sessions to automatically lock them. There are 7 public methods within

the SessionLock class:

� LockSession()

� StartSessionMonitoring()

� StopSessionMonitoring()

� PauseSessionMonitoring()

� ResumeSessionMonitoring()

� PauseSessionTimer()

� ResumeSessionTimer()

Page 110 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

LockSession()

The LockSession() method is used to explicitly lock the session. When a

session locks, all forms within the application are minimized, and a login

form is show that forces the user to re-authenticate or allows another user

to log into the system. When a user is successfully authenticated, the

application resumes normally. This method can be called explicitly to lock

the session and is called internally when the session lock shortcut key is

pressed and when a user's session times out.

Sample - Locking the Current Session [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub Lock()

 '-- Call the method to lock the session

 ' This call blocks until a user is re-authenticated

 SessionLock.LockSession()

End Sub

Sample - Locking the Current Session [C#]

using MicroFour.StrataFrame.Security;

...

private void Lock()

{

 //-- Call the method to lock the session

 // This call blocks until a user is re-authenticated

 SessionLock.LockSession();

}

StartSesionMonitoring() and StopSessionMonitoring()

The StartSessionMonitoring() and StopSessionMonitoring() methods are

used in conjunction to start and stop session monitoring respectively.

Session monitoring consists of two things:

1. Session Timer - The session timer watches for idle sessions and

automatically locks the session if the idle time exceeds the current

user's idle timeout.

Page 111 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

2. Keyboard Monitoring - Keyboard activity is monitored for the session

lock shortcut key. StartSessionMonitoring() installs a low-level

Windows input hook into the current process to monitor both

keyboard and mouse input and determine when the user’s session

timed-out. This low-level hook also watches for the session lock

shortcut key.

Note: The hook installed by the StartSessionMonitoring() method

must be in place for the automatic session monitoring to work.

Therefore, the StartSessionMonitoring() method must be called to

attach to the Windows hook before the application executes; this is

usually done within the InitApplication method of the AppMain.vb

(program.cs) file.

StopSessionMonitoring() manually removes the low-level Windows hook.

This method is generally never called since the hook is automatically

removed when the process exits.

Sample - Starting Session Monitoring [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Shared Sub InitApplication(ByVal e As InitializingApplicationEventArgs)

 '-- Start the session locking monitor

 SessionLock.StartSessionMonitoring()

End Sub

Sample - Starting Session Monitoring [C#]

using MicroFour.StrataFrame.Security;

...

private static void InitApplication(InitializingApplicationEventArgs e)

{

 //-- Start the session locking monitor

 SessionLock.StartSessionMonitoring();

}

PauseSessionMonitoring() and ResumeSessionMonitoring()

The PauseSessionMonitoring() and ResumeSessionMonitoring() are used in

Page 112 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

conjunction to respectively pause and resume the session monitoring.

When PauseSessionMonitoring() is called, the session timer is paused and

the session lock shortcut key is ignored. This method is generally used

when the application needs to perform a processing intensive task that

requires the computer to be idle for an extended period of time.

For example, if a user requests a report that takes a considerable amount

of time to compute, but the user’s session timeout is very short, the

session might timeout and lock while waiting on the report to complete. In

such situations, using the PauseSessionMonitoring() and

ResumeSessionMonitoring() methods allows you to wrap critical sections

of the application within a Pause/Resume block to make sure that the

session does not lock while in that block.

Sample - Pausing Session Monitoring in a Critical Application Section [Visual

Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub ComputeReport()

 '-- Pause the session

 SessionLock.PauseSessionMonitoring()

 '-- Compute the report

 ' This code takes a while to complete and the session should not

 ' be allowed to lock while inside it

 '-- Resume the monitoring

 SessionLock.ResumeSessionMonitoring()

End Sub

Sample - Pausing Session Monitoring in a Critical Application Section [C#]

using MicroFour.StrataFrame.Security;

...

private void ComputeReport()

{

 //-- Pause the session

 SessionLock.PauseSessionMonitoring();

Page 113 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 //-- Compute the report

 // This code takes a while to complete and the session should not

 // be allowed to lock while inside it

 //-- Resume the monitoring

 SessionLock.ResumeSessionMonitoring();

}

PauseSessionTimer() and ResumeSessionTimer()

Like the PauseSessionMonitoring() and ResumeSessionMonitoring()

methods, the PauseSessionTimer() and ResumeSessionTimer() methods

are used in conjunction to pause the session timer and prevent a user’s

session from automatically timing out during a critical code block within

the application. However, unlike the pause/resume monitoring methods,

these pause/resume timer methods do not prevent the session lock

shortcut key from locking the session, they only pause the automatic

timer.

Sample - Pausing the Session Timer While in a Critical Application Block

[Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub ComputeReport()

 '-- Pause the session

 SessionLock.PauseSessionTimer()

 '-- Compute the report

 ' This code takes a while to complete and the session should not

 ' automatically lock while inside it

 '-- Resume the monitoring

 SessionLock.ResumeSessionTimer()

End Sub

Sample - Pausing the Session Timer While in a Critical Application Block

[C#]

using MicroFour.StrataFrame.Security;

...

Page 114 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

private void ComputeReport()

{

 //-- Pause the session

 SessionLock.PauseSessionTimer();

 //-- Compute the report

 // This code takes a while to complete and the session should not

 // automatically to lock while inside it

 //-- Resume the monitoring

 SessionLock.ResumeSessionTimer();

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

SessionLock Properties SessionLock Properties SessionLock Properties SessionLock Properties

Purpose: This document discusses the SessionLock class's properties and

their use in monitoring and controlling the current user's session.

SessionLock Properties

The SessionLock class contains 2 shared (static) properties that contain

information and control aspects of the session locking:

1. LastUserInput

2. SessionLockKey

LastUserInput

The LastUserInput property is a read-only property that returns the

System.DateTime of the last user input within the application.

Note: The LastUserInput property only applies to the application on which

it is used. In other words, the DateTime returned will not be the value of

Page 115 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

the last user input within any running application, but will instead be the

last user input, either mouse or keyboard, within the StrataFrame

application from which it was called.

SessionLockKey

The SessionLockKey property gets or sets a System.Windows.Forms.Keys

enumeration that represents the keyboard shortcut for the session

locking. If the shortcut key is pressed and the SessionLock class is

monitoring user input, the session will immediately lock.

The SessionLockKey is generally defined by the application developer and

is set during the InitApplication() method. However, the key may be

canged anywhere within the application and may even be customized by

the end-user.

Sample - Setting the SessionLockKey [Visual Basic]

Private Shared Sub InitApplication(ByVal e As InitializingApplicationEventArgs)

 '-- Start the session locking monitor & set the quick key to lock the application

 SessionLock.StartSessionMonitoring()

 SessionLock.SessionLockKey = Keys.F11

End Sub

Sample - Setting the SessionLockKey [C#]

private static void InitApplication(InitializingApplicationEventArgs e)

{

 //-- Start the session locking monitor & set the quick key to lock the application

 SessionLock.StartSessionMonitoring();

 SessionLock.SessionLockKey = Keys.F11;

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Page 116 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Security Documentation Send comments on this topic.

SessionLock Events SessionLock Events SessionLock Events SessionLock Events

Purpose: This document discusses the SessionLock class's events and

their use in monitoring and controlling the current user's session.

SessionLock Events

The SessionLock class contains 2 shared (static) events that provide hooks

into the session locking:

1. AfterSessionLock

2. BeforeSessionLock

AfterSessionLock

The AfterSessionLock event is raised immediately after the session lock is

released, meaning that a user has re-authenticated and the application is

resuming. The AfterSessionLock event is raised after the

SecurityBasics.CurrentUserChanged event if a different user has logged

into the application.

BeforeSessionLock

The BeforeSessionLock event is raise immediately before the application’s

session locks. This event is raised regardless of whether the application is

being explicitly or automatically locked and provides a hook to enable any

custom processing that must take place before the session locks (such as

saving off the current user’s settings before another user is allowed to log

into the application).

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Differences in Web Security Differences in Web Security Differences in Web Security Differences in Web Security

Page 117 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Purpose: This document describes the differences between security on a

web project and security within a Windows project.

Differences in Web Security

Security within a web project is different than security within a Windows

project in the following ways:

� CurrentUser - SecurityBasics.CurrentUser must be configured to store

an ISecurityUser object for each session.

� Maintenance Forms - To maintain users, roles, and restriction sets, you

must either create custom web-based maintenance forms or use the

winform-based maintenance forms provided.

� Object Permissions - Object permission function much the same as

when using winforms, with the primary exception being the lack of

form-level security keys.

� Session Locking - Session locking is not supported within web

applications.

� Programmatic Access - Programmatic access within a web project is

exactly the same as within a Windows project.

CurrentUser

When using security on the web, the SecurityBasics.CurrentUser property

must be configured to store a different ISecurityUser object for each

session, rather than just one for the whole AppDomain.

This is accomplished via a configuration setting which indicates that the

application is being run within a web environment. This tells the

CurrentUser property to use the current session object to retrieve and

store the current ISecurityUser . For more information, refer to the

Required Global.asax Code topic.

Maintenance Forms

No user, role, or restriction set maintenance forms are available for web

projects. Therefore, all users, roles, and selected permissions must either

be set using the SecurityDialog in a windows form, or must be set via

custom forms created within your web project to maintain user

Page 118 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

permissions and roles.

Object Permissions

Web-based object permissions function as follows:

� Field-Level - All field-level permissions work identically on WebForms

controls as they do on their corresponding WinForm controls.

� Business Object-Level - Business object-level permissions work the

same as well, but the forms will not automatically handle the

SecurityDenied event of the business objects.

� Form-Level - There is no form-level security key, so permissions must

be checked programmatically to prevent the viewing of a complete

WebForm.

Session Locking

Session locking is not supported within web applications.

Programmatic Access

Programmatic access within a web project is exactly the same as within a

Windows project. The CurrentUser object can be queried for available

permissions, and the proper ISecurityUser object will be returned from

the CurrentUser property.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Required Global.asax Code Required Global.asax Code Required Global.asax Code Required Global.asax Code

Purpose: This document shows the code required inside the Global.asax

file to configure the security module for work within a web application.

Required Global.asax Code

Page 119 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

All of the code required to configure a StrataFrame web application for use

with the StrataFrame Security Module should be placed within the

Application_Start() method. This is since the method is only called once,

during the first page request after the website’s application pool is

restarted.

IsWebEnvironment

The MicroFour.StrataFrame.Security.SecurityBasics class contains the

shared (static) property IsWebEnvironment . This property is used to

indicate to the security module that the security is being run from within a

web application and that the session objects should be used to store the

CurrentUser and other session specific data. The IsWebEnvironment

property should be set at the top of the Application_Start() method within

the Global.asax file.

Sample - Setting the IsWebEnvironment Property [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Protected Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

 '-- Set the property

 SecurityBasics.IsWebEnvironment = True

End Sub

Sample - Setting the IsWebEnvironment Property [C#]

using MicroFour.StrataFrame.Security;

...

protected void Application_Start(object sender, EventArgs e)

{

 //-- Set the property

 SecurityBasics.IsWebEnvironment = true;

}

Other Required Global.asax Code

Other than the IsWebEnvironment variable, the code required to enable

specific pieces of the security module within a web application is the same

as required within a Windows application. Therefore, any AppMain.vb

Page 120 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

(program.cs) code that is required for a Windows application should be

placed within the Global.asax file of a web application.

A complete description of all code required in AppMain.vb (program.cs)

may be found under the Programmatic Access section of this help file.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Authenticating Users Authenticating Users Authenticating Users Authenticating Users

Purpose: This document discusses how to authenticate users in a web

environment using the StrataFrame security module.

Authenticating Users

Authenticating users within a web application is very similar to

authenticating users within a Windows environment; however, no default

login form or form template is provided for web applications. As

such, authentication must be done programmatically using methods of the

MicroFour.StrataFrame.Security.Login class.

Note: The reasoning behind the omission of a default login form or login

form template is that each web-based login form is fundamentally

different depending on requirements. Also most login forms are not just

login forms, but frames or regions within more complex forms.

Login Methods Used within a Web Application

The AuthenticateUser() and SetLoggedInUser() methods of the Login

class are typically used to authenticating users within a web application:

� AuthenticateUser() - The AuthenticateUser() method does not change

the CurrentUser object, but returns a value containing the results of

the authentication request.

Page 121 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

� SetLoggedInUser() - The SetLoggedInUser() method returns a value

containing the results of the authentication request. If the

authentication is successful, it also changes the CurrentUser object to

be the new user.

Sample - Changing the Logged In User - Web Application [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub cmdLogin_Click(ByVal sender As Object, ByVal e As EventArgs) Handle cmdLogin.Click

 '-- Establish locals

 Dim loResult As Login.LoginResult

 '-- Attempt to authenticate the user

 loResult = Login.SetLoggedInUser(UserName, Password, "")

 '-- If the result if Success, AdminLoggedOn, or SecMaintUserLoggedOn, the

 ' SecurityBasics.CurrentUser object will be changed to the correct user

 '-- Do something based upon the result

 Select Case loResult

 Case Login.LoginResult.Success

 Case Login.LoginResult.Failure

 Case Login.LoginResult.UserDeactivated

 ...

 End Select

End Sub

Sample - Changing the Logged In User - Web Application [C#]

using MicroFour.StrataFrame.Security;

...

private void cmdLogin_Click(object sender, EventArgs e)

{

 //-- Establish locals

 Login.LoginResult loResult;

 //-- Attempt to authenticate the user

 loResult = Login.SetLoggedInUser(UserName, Password, "");

Page 122 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 //-- If the result if Success, AdminLoggedOn, or SecMaintUserLoggedOn, the

 // SecurityBasics.CurrentUser object will be changed to the correct user

 //-- Do something based upon the result

 switch (loResult)

 {

 case Login.LoginResult.Success:

 case Login.LoginResult.Failure:

 case Login.LoginResult.UserDeactivated:

 ...

 }

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Adding Security to an Existing Application Adding Security to an Existing Application Adding Security to an Existing Application Adding Security to an Existing Application

Purpose: Provide a step-by-step procedure on adding security to an

existing application.

Adding Security to an Existing Application

For a new application, security may be easily included by using the

StrataFrame Windows Application w/ Security template when creating the

Visual Studio project. However, adding security to existing applications

requires some manual configuration.

To add security to an existing application, follow the steps below:

1. Add Security Reference - Add a reference to MicroFour StrataFrame

Security within your Visual Studio project.

Page 123 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

a. Open your application's visual studio project.

b. Within the solution explorer, ensure that the Show All Files

option is selected.

c. Right-Click on the References folder and select the Add

Reference option.

d. Select the MicroFour StrataFrame Security component from the

list, and click OK .

2. Add Security Namespaces - Add the security namespaces to

AppMain.vb (Visual Basic) or program.cs (C#).

Add Security Namespaces (Visual Basic)

Imports MicroFour.StrataFrame.Security

Imports MicroFour.StrataFrame.Security.BusinessObjects

Add Security Namespaces (C#)

using MicroFour.StrataFrame.Security;

using MicroFour.StrataFrame.Security.BusinessObjects;

3. Set Data Source Key - Define and set the Security Data Source Key

within the SetDataSources() method of AppMain.vb or program.cs.

For a detailed description on the data source key, including what it

does and how to set it, refer to the Setting the Security Data Source

Key help topic.

Security Data Source Key (Visual Basic)

Page 124 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

'-- Set the data source key for the security tables

SecurityBasics.SecurityDataSourceKey = ""

4. Create and Show the Login Form - The application login form is

launched within the AppMain.vb (program.cs) file. If desired, a

custom form may be used instead of the default StrataFrame login

form.

a. ShowLoginAndInitMainForm() - The login form must be launched

within the ShowLoginAndInitMainForm() method of AppMain.vb

or program.cs. For more information on configuring the

ShowLoginAndInitMainForm() method, refer to the Showing the

Initial Login Form topic.

ShowLoginAndInitMainForm (Visual Basic)

Private Shared Sub ShowLoginAndInitMainForm(ByVal e As ShowLoginAndInitFormEventArgs)

 '-- Set the login form to your custom login form (optional)

 'Login.LoginFormType = GetType(MyLoginForm)

 '-- Show the login form and authenticate the user

 e.ShowMainForm = Login.ShowLoginAndAuthUser(True)

End Sub

b. Custom Login Form - If a custom login form is desired, it must be

created as a new SF Login Form item within the Visual Studio

project. For more information on creating a custom login form,

refer to the Creating a Custom Login Form topic.

5. Configure the InitApplication() Method - The following items are added

to the InitiApplication() method within the AppMain.vb or program.cs

file to configure the remaining security options. The code snippits

shown contain all default values for the listed options.

a. Global Preferences - Required - Retrieve the global preferences

from the database using the following method call. For more

information, refer to the Retrieving Global Preferences from the

Database help topic.

Retrieve Global Preferences(Visual Basic)

'-- Retrieve the global preferences

SFSPreferencesBO.RetrieveSecurityPreferences()

Page 125 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

b. Set Encryption Key - Required - Set the encryption key to be used

for user data using the following method call. For more

information, refer to the Specifying the Encryption Key for User

Data help topic.

Encryption Key (Visual Basic)

'-- Set the encryption key and vector for the user data

SecurityBasics.SetSecurityKeyAndVectorForUserAuthentication("MySecurityKey")

c. Configure Session Locking - Possibly Required - Start the session

locking monitor and configure the quick lock key using the

following lines of code. This is only required if dynamic session

locking will be used within your application. For more

information, refer to the Initializing Session Locking help topic.

Session Locking (Visual Basic)

'-- Start the session locking monitor & set the quick key to lock the application

SessionLock.StartSessionMonitoring()

SessionLock.SessionLockKey = Keys.F11

d. Specify Initial Usernames and Passwords - Optional - Custom

users for administration and security maintenance may be

created using the code below.

Note: These users will not appear to end-users within the

Security Maintenance and cannot be configured outside of the

below code assignments. As such, dynamic usernames and/or

passwords (such as the default administrator password which

dynamically includes the current date) are recommended.

Custom Administrative Usernames and Passwords (Visual Basic)

'-- Set the administrative and security maintenance usernames and passwords

SecurityBasics.AdministratorUserName = "Administrator"

SecurityBasics.AdministratorPassword = "admin" & DateTime.Now.Day.ToString() '

SecurityBasics.AdministratorUserPk = -1

SecurityBasics.SecurityMaintenanceUserName = "SecurityUser"

SecurityBasics.SecurityMaintenancePassword = "mySecurityUserPass1"

Page 126 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

SecurityBasics.SecurityMaintenanceUserPk = -2

e. Specify Default Security Settings - Optional - The default

permission action, blocked message (using plain text or a

message key), replacement character, and replacement regex can

be specified using the following assignments.

Security Settings (Visual Basic)

'-- Set the default actions for security enabled objects within the application

SecurityBasics.DefaultPermissionInfo = New PermissionInfo(PermissionAction.Deny, _

 "Access Denied.", DeniedActions.Message)

SecurityBasics.DefaultPermissionAction = PermissionAction.Deny

SecurityBasics.DefaultBlockedMsg = "Access Denied."

'SecurityBasics.DefaultBlockedMsgKey = "AccessDeniedKey"

SecurityBasics.BlockedReplacementCharacter = "*"c

SecurityBasics.BlockedReplacementRegex = "[A-Za-z0-9@]"

f. Allow or Deny Windows Authentication - Optional - Windows

authentication may be explicitly denied using the follwoing line of

code. To allow windows authentication within the application,

simply change the below False to a True.

Windows Authentication (Visual Basic)

'-- Determine whether to allow Windows authentication

SecurityBasics.AllowWindowsAuth = False

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Creating a New Application with Security Creating a New Application with Security Creating a New Application with Security Creating a New Application with Security

Purpose: Provide a step-by-step procedure on creating a new application

with security.

Page 127 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Creating a New Application with Security

For a new applications, inclusion of security is greatly streamlined by

using the StrataFrame Windows Application w/ Security template. To

create a new application using this template:

1. Create New Project - Create a new Visual Studio Project using the

StrataFrame template.

a. Within Visual Studio, select New->Project under the File menu.

The New Project dialog will display.

b. Select the StrataFrame option under the Visual Basic or Visual

C# item to see the available StrataFrame project templates.

c. Select the StrataFrame Windows Application w/ Security

template and click the OK button.

Note: The template name may be abbreviated by the Visual

Studio dialog. The Application w/ Security template may still be

identified by clicking on each template and viewing the

description.

Page 128 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

2. Custom Login Form - If a custom login form is desired, it may be

created as a new SF Login Form item and launched within the

AppMain.vb or program.cs file. For more information, refer to the

Creating a Custom Login Form help topic.

3. Recommended Customizations - For security reasons, it is highly

recommended that the following options be changed from the

StrataFrame defaults within the AppMain.vb or program.cs file:

a. Set Data Source Key - Set the Security Data Source Key within

the SetDataSources() method of AppMain.vb or program.cs. For

a detailed description on the data source key, including what it

does and how to set it, refer to the Setting the Security Data

Source Key help topic.

Page 129 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Security Data Source Key (Visual Basic)

'-- Set the data source key for the security tables

SecurityBasics.SecurityDataSourceKey = ""

b. Change Encryption Key - Change the encryption key to be used

for user data using the following method call within the

InitApplication() method. For more information, refer to the

Specifying the Encryption Key for User Data help topic.

Encryption Key (Visual Basic)

'-- Set the encryption key and vector for the user data

SecurityBasics.SetSecurityKeyAndVectorForUserAuthentication("MySecurityKey")

c. Change Initial Usernames and Passwords - Custom users for

administration and security maintenance are defined within the

below code, found in the InitApplication() method. For security

reasons, a custom dynamic password is recommended for each

application.

Note: These users will not appear to end-users within the

Security Maintenance and cannot be configured outside of the

below code assignments.

Custom Administrative Usernames and Passwords (Visual Basic)

'-- Set the administrative and security maintenance usernames and passwords

SecurityBasics.AdministratorUserName = "Administrator"

SecurityBasics.AdministratorPassword = "admin" & DateTime.Now.Day.ToString() '

SecurityBasics.AdministratorUserPk = -1

SecurityBasics.SecurityMaintenanceUserName = "SecurityUser"

SecurityBasics.SecurityMaintenancePassword = "mySecurityUserPass1"

SecurityBasics.SecurityMaintenanceUserPk = -2

4. Optional Customizations - The following configurations are optional,

and may be changed from the listed defaults as desired to suit the

needs of the application:

a. Configure Session Locking - If session locking will not be used

Page 130 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

within the application, the following lines of code may be removed

or commented out within the InitApplication() method. If

session locking will be used, they SessionLockKey may be

changed. This is only required if dynamic session locking will be

used within your application. For more information, refer to the

Initializing Session Locking help topic.

Session Locking (Visual Basic)

'-- Start the session locking monitor & set the quick key to lock the application

SessionLock.StartSessionMonitoring()

SessionLock.SessionLockKey = Keys.F11

b. Specify Default Security Settings - The default permission action,

blocked message (using plain text or a message key),

replacement character, and replacement regex are specified using

the following assignments within the InitApplication() method.

These may be changed as desired.

Security Settings (Visual Basic)

'-- Set the default actions for security enabled objects within the application

SecurityBasics.DefaultPermissionInfo = New PermissionInfo(PermissionAction.Deny, _

 "Access Denied.", DeniedActions.Message)

SecurityBasics.DefaultPermissionAction = PermissionAction.Deny

SecurityBasics.DefaultBlockedMsg = "Access Denied."

'SecurityBasics.DefaultBlockedMsgKey = "AccessDeniedKey"

SecurityBasics.BlockedReplacementCharacter = "*"c

SecurityBasics.BlockedReplacementRegex = "[A-Za-z0-9@]"

c. Allow Windows Authentication - By default, Windows

authentication is disabled. Windows authentication may be

allowed by changing the follwoing assignment to True within the

InitApplication() method.

Windows Authentication (Visual Basic)

'-- Determine whether to allow Windows authentication

SecurityBasics.AllowWindowsAuth = False

Page 131 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Creating a Custom Login Form Creating a Custom Login Form Creating a Custom Login Form Creating a Custom Login Form

Purpose: Provide a step-by-step procedure on creating and implimenting

a custom login form within an application.

Creating and Implimenting a Custom Login Form

By default, the StrataFrame login form will be used to obtain access to a

secured StrataFrame application. In order to change this login form, a

custom login form must first be created. That login form must then be

called within the AppMain.vb or program.cs file.

Creating the Custom Form

to create a custom login form:

1. Open the desired project within Visual Studio.

2. Right-click within the Solution Explorer and select Add->New Item...

3. Select SF Login Form from the available options, change its Name as

desired, and click Add .

Page 132 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

4. A form resembling the one pictured below will be created. Its look,

feel, and functionality may be modified as desired to suit the needs of

the application.

Page 133 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Calling the Login Form within AppMain.vb or program.cs

Once the custom login form has been created, it may be called within

AppMain using the following code within the ShowLoginAndInitMainForm()

method, where MyLoginForm is the name of your custom login form:

Calling a Custom Login Form (Visual Basic)

'-- Set the login form to your custom login form

Login.LoginFormType = GetType(MyLoginForm)

Note: If the StrataFrame Windows Application w/ Security template

was used, this code will already be present, but will be commented out.

To impliment the custom form, simply uncomment the line, and change

'MyLoginForm' to be the name of your custom login form.

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Page 134 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Security Documentation Send comments on this topic.

Calling the Security Maintenance Dialog Calling the Security Maintenance Dialog Calling the Security Maintenance Dialog Calling the Security Maintenance Dialog

Purpose: The purpose of this document is to discuss how to show the

Security Maintenance Dialog (SecurityDialog) within your application to

allow the end-users of your application to maintain roles and users.

The SecurityDialog

The same security maintenance dialog that is used within the design-time

role-based security editor can be shown within your application to allow

end-users to maintain users and roles within their database. This form is

the MicroFour.StrataFrame.Security.SecurityDialog form. There are

several overloads to the constructor of this dialog, but only 2 of them can

be used at runtime.

The SecurityDialog behaves differently at runtime than it does at design-

time. Since permissions are defined by the developer and must be tied

into the application, it is not logical for end-users to be able to define new

permissions or alter existing ones. However, end-users should be able to

create or alter users, roles, and optionally restriction sets. Therefore,

while permissions can be shown within the SecurityDialog at runtime,

they cannot be edited.

The following samples can be used to show the SecurityDialog within your

application. The default constructor for the SecurityDialog class will allow

both the permissions and the restriction sets to be visible within the

dialog. The second overload accepts two Boolean arguments: the first

determines whether the permissions will be visible, the second determines

whether the restriction sets will be visible and editable.

Code Samples

Showing the Security Dialog

Sample - Showing the SecurityDialog [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub ShowSecurityDialog()

 '-- Create the form and show it

Page 135 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 Using loDialog As New SecurityDialog()

 loDialog.ShowDialog()

 End Using

End Sub

Sample - Showing the SecurityDialog[C#]

using MicroFour.StrataFrame.Security;

...

private void ShowSecurityDialog()

{

 //-- Create the form and show it

 using (SecurityDialog loDialog = new SecurityDialog())

 {

 loDialog.ShowDialog();

 }

}

Showing the SecurityDialog Without Permissions or

Restriction Sets

Sample - Showing the SecurityDialog without Permissions or Restriction

Sets [Visual Basic]

Imports MicroFour.StrataFrame.Security

...

Private Sub ShowSecurityDialog()

 '-- Create the form and show it

 Using loDialog As New SecurityDialog()

 loDialog.ShowDialog(False, False)

 End Using

End Sub

Sample - Showing the SecurityDialog without Permissions or Restriction

Sets [C#]

using MicroFour.StrataFrame.Security;

...

private void ShowSecurityDialog()

{

Page 136 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

 //-- Create the form and show it

 using (SecurityDialog loDialog = new SecurityDialog())

 {

 loDialog.ShowDialog(false, false);

 }

}

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Security Documentation Send comments on this topic.

Deploying Security Data Deploying Security Data Deploying Security Data Deploying Security Data

Purpose: This topic gives a basic step-by-step on deploying security data

using the Database Deployment Toolkit, and gives an account of all

required information for those wishing to deploy security data without

using the Database Deployment Toolkit.

Deploying Security Data

Whenever a secured application is deployed to the end-user, a number

of required tables must exist within the specified database with the

structure specified below. These tables should be deployed with

all security data pertaining to the desired security project. If the

Database Deployment Toolkit is being used, both the deployment data

packages and the required table structures may be created automatically

via the Deployment Package Wizard.

Deploying Security Data Using the DDT

It is highly recommended that the Database Deployment Toolkit be used

to generate both the structure and deployment data for the security

system. Not only does the available Deployment Package Wizard greatly

streamline the deployment process, it also ensures accuracy and

completeness for the structure and data.

Page 137 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

To generate the required structure and deployment packages using the

Database Deployment Toolkit:

1. Open Visual Studio.

2. Select Database Deployment Toolkit under the StrataFrame menu.

3. Select the desired DDT Profile and click the Open button.

4. Right-click on the Deployment Data item in the left panel and select

Deployment Package Wizard from the context menu.

5. Choose Role Based Security Data as the Deployment Data Type.

6. When prompted, select the desired source database, destination

database, and security project.

7. Once the wizard is complete, both the security table structures and

deployment data will be generated and ready for distribution.

Note: A more in-depth step-by-step for the above process is available in

the Deployment Package Wizard topic within the StrataFrame DDT help

file.

Deploying Security Data Without the DDT

Even if the Database Deployment Toolkit is not being used, the required

table structures and deployment data will still need to be created on the

end-user system.

For convenience, the required table structures and relationships are listed

below. Again, if using the Database Deployment Toolkit, both the below

structures and all deployment data present in the development databases

may be packaged automatically using the Deployment Package Wizard .

Table Structures SQL Script

The SecurityTables.sql script is a SQL Server 2005 script that can be used

to create the StrataFrame security tables within a database. You can run

this script independently, or you may incorporate it into your application's

own database creation script.

To run the script:

Page 138 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

1. Download the Script - Click here to download the script. Once

downloaded, extract the .sql file from the Zip.

2. Replace Database Name - Before the script may be run, a single line

must be changed. The very first non commented line in the script

reads "USE [DatabaseName]". Replace "DatabaseName" with the

name of the desired database.

3. Run the Script - The script is now ready to be run.

Note: This script is designed for SQL Server 2005 only, and must be

modified before it can be used on SQL Server 2000.

Explicit Table Definitions

The explicit table definitions for all security tables along with their required

relationships are listed below.

Preferences - SFSPreferences

Page 139 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Permissions - SFSPermissions

Roles - SFSRoles

Users - SFSUsers

Page 140 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Restrictions - SFSRestrictions

Restriction Items - SFSRestrictionItems

Page 141 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Roles to Permissions Link Table - SFSRolesXPermissions

Users to Permissions Link Table - SFSUsersXPermissions

Users to Roles Link Table - SFSUsersXRoles

Page 142 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

Table Relationships

The above listed tables must exist with the following relationships:

Security Relationships

The following diagram shows the basic outline of all table relationships within security:

Permission, Roles, and Users Diagram

The following diagram shows a more detailed breakdown of the relationsh

Workstation Restrictions Diagram

The following diagram shows a more detailed breakdown of the relationsh

tables:

Page 143 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

© 2005-2007 MicroFour, Inc. All Rights Reserved.

Page 144 of 144Security Introduction

9/2/2008file://C:\Documents and Sett...

